УДК 616.981.455:576.809.7

Е.М.Кузнецова, О.А.Волох, Е.А.Смолькова, Т.Н.Щуковская, И.А.Шепелёв, Н.Г.Авдеева, А.Л.Кравцов, А.К.Никифоров

ИММУНОБИОЛОГИЧЕСКИЕ СВОЙСТВА АНТИГЕННЫХ КОМПЛЕКСОВ ТУЛЯРЕМИЙНОГО МИКРОБА

Российский научно-исследовательский противочумный институт «Микроб», Саратов

В результате проведенных исследований препаратов антигенных комплексов туляремийного микроба, полученных из штаммов-продуцентов разных подвидов (holarctica, nearctica, mediasiatica, novicida), установлено, что протективный антигенный комплекс является общим антигеном для возбудителя туляремии независимо от его подвидовой принадлежности. Полученные антигенные комплексы из штаммов голарктического, неарктического и среднеазиатского подвидов обладают сходным химическим и субъединичным составом и иммунобиологическими свойствами. Особенности строения протективного антигенного комплекса из Francisella tularensis subsp. novicida, приводят к снижению его иммуногенности и протективности по сравнению с аналогичными антигенами из других подвидов.

Ключевые слова: Francisella tularensis, подвиды возбудителя туляремии, антигены, иммуногенность, протективность.

E.M.Kuznetsova, O.A.Volokh, E.A.Smol`kova, T.N.Shchukovskaya, I.A.Shepelev, N.G.Avdeeva, A.L.Kravtsov, A.K.Nikiforov

Immunobiological Properties of Francisella tularensis Antigen Complexes

Russian Research Anti-Plague Institute "Microbe", Saratov

Carried out are the studies of preparations of *Francisella tularensis* antigen complexes, obtained from the producer strains of different subspecies *(holarctica, nearctica, mediasiatica, novicida)*. It is discovered that the outer-membrane (OM) antigen complex is a common antigen of *Francisella tularensis* regardless of its sub-specific origin. Antigen complexes isolated from strains of holarctica, nearctica, and mediasiatica subspecies have similar chemical and subunit composition, and immunobiological properties. Peculiarities of composition of *F. tularensis* subsp. *novicida* OM-antigen complex lead to the decrease of its immunogenicity and protective capability in comparison with analogous antigens of other subspecies.

Key words: Francisella tularensis, subspecies of tularemia agent, antigens, immunogenicity, protective capability.

Ареал возбудителя туляремии охватывает все страны зоны умеренного климатического пояса Северного полушария, включая территорию России и соседних стран [4, 12]. И хотя в Российской Федерации заболеваемость туляремией находится на низком уровне, специалисты прогнозируют возможность обострения эпидемиологической обстановки по данной инфекции [3]. В связи с этим очевидна перспективность разработки новых и усовершенствование имеющихся иммунопрофилактических и диагностических препаратов. Особое внимание при этом уделяется изучению комплексных антигенов туляремийного микроба [10, 11, 12]. Одним из таких «природных коктейлей» является протективный антигенный комплекс (ПАК) туляремийного микроба, отличающийся повышенным содержанием белковых компонентов (до 65 % белка) и большей протективной активностью, по сравнению с ранее описанными комплексными антигенами [2, 6, 9]. Ранее были подробно изучены особенности его биосинтеза штаммом-продуцентом живой туляремийной вакцины *F. tularensis* 15 НИИЭГ [7] и иммунобиологические свойства этого антигена [1].

В настоящей работе представлены данные сравнительного анализа иммунобиологических свойств препаратов ПАК, полученных из штаммов-продуцентов разных подвидов туляремийного микроба.

Материалы и методы

В работе использовали препараты ПАК, полученные из биомассы 48-часовых агаровых культур штаммов-продуцентов разных подвидов туляремийного микроба: ПАК-15 (из штамма *F. tularensis* 15 НИИЭГ), ПАК-503 (из штамма *F. tularensis* 503/840), ПАК-А 'Cole (из штамма *F. tularensis* B399 A 'Cole), ПАК-А 179 (из штамма *F. tularensis* A-179) и ПАК-Utah 112 (из штамма *F. tularensis* Utah 112). Препараты поверхностных антигенных комплексов *F. tularensis* получали по методике [7].

Уровень антител в сыворотке крови иммунизированных лабораторных животных оценивали в иммуноферментном анализе (ИФА, ДИА) с использованием коммерческой туляремийной сыворотки и экспериментальных поликлональных антител к протективному антигенному комплексу (Ig «ПАК»). Анализ иммуногенности препаратов проводили на беспородных белых мышах (18–20 г) и морских свинках (250 г). В качестве положительного контроля использовали лабораторных животных, вакцинированных живой туляремийной вакциной (ЖТВ), Омск. Постановку и учет реакции лейкоцитолиза осуществляли по стандартной методике [5]. Статистические профили распределения лейкоцитов белых мышей по

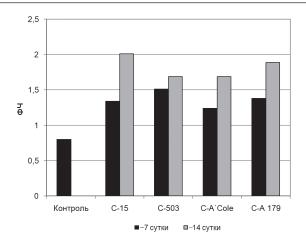
клеточному циклу — ДНК-гистограммы получали с использованием цитохимического метода B.Barlogie *et al.* [8] на импульсном проточном цитофлюориметре ICP-22 PHYWE. С помощью нитросинего тетразолиевого теста (НСТ) оценивали фагоцитарную активность перитонеальных макрофагов белых мышей [1], выраженную в процентах фагоцитирующих клеток и фагоцитарным числом (количество захваченных частиц на один фагоцит).

Статистическую обработку данных проводили по критерию Стьюдента, доверительный интервал устанавливали при вероятности 95 %.

Результаты и обсуждение

По своим физико-химическим свойствам, биохимическому и иммунохимическому составу препараты ПАК из вирулентных штаммов туляремийного микроба разных подвидов были аналогичны референс-препарату из вакцинного штамма. В частности, все препараты ПАК, кроме ПАК-Utah 112, по данным гель-хроматографии имели молекулярную массу около 280 кДа, обладали сходным химическим составом и содержали следующие иммунохимически активные субъединицы: 81-85, 57-60, 43, 23-27 и 14-17 кДа. Хроматографический профиль препарата ПАК-Utah 112 отличался наличием двух пиков с молекулярными массами около 280 и 160 кДа. Кроме того, в составе данного антигена были обнаружены дополнительные высокомолекулярные субъединицы более 110 кДа и отсутствовали полипептиды в области 57-85 кДа. Химический состав препарат ПАК-Utah 112 отличался от аналогичных препаратов других подвидов большим содержанием углеводного компонента.

При введении однократно подкожно препаратов ПАК белым мышам в дозе 10 мкг было отмечено, что во всех случаях к 3-7-м суткам регистрируются специфические антитела в ДИА в титре 1/40–1/120, с достижением максимума (до 1/260–1/320) к 14-м суткам (для ПАК-15, ПАК-503, ПАК-А'Cole и ПАК-А 179) и к 21-м суткам до 1/160 (для ПАК-Utah 112). Установлено, что оптимальными способами иммунизации ПАК являются парентеральные (подкожный, внутрибрюшинный) – титр в ДИА 1/320, тогда как при пероральном введении антительный ответ был зарегистрирован в более поздние сроки и в более низком титре (в 4-8 раз меньше). Увеличение кратности введения не оказывало влияния на уровень антител. У морских свинок (иммунизирующая доза 100 мкг препарата, однократно) антительный ответ к ПАК-15 был зарегистрирован только к 14-м суткам (титр в сэндвич-ИФА 1/320-1/640) после иммунизации, с максимумом к 42-м суткам (титр 1/640-1/960) и снижением уровня антител к 6 месяцам (титр 1/40–1/80) с начала эксперимента.


Проведен сравнительный анализ влияния иммунизации препаратами ПАК разных подвидов и ЖТВ на показатели клеточного звена иммунитета. При

оценке реакции лейкоцитолиза у белых мышей, иммунизированных препаратами ПАК, полученными из вирулентных штаммов, отмечена волнообразная динамика показателей с максимумом на 14-е сутки иммуногенеза (33–36 %) и их снижение к окончанию срока наблюдения до отрицательного или слабоположительного уровня (15–20 %), соответствующего контрольной группе. После иммунизации белых мышей препаратами ПАК-15 реакция лейкоцитолиза была резко положительна к 21-м суткам и составила в среднем 53,5 %. У мышей, вакцинированных ЖТВ, в эти же сроки коэффициент лейкоцитолиза был равен 56 %. Положительный аллергический ответ у животных, иммунизированных препаратом ПАК-15, свидетельствует о его высокой иммуногенности.

В результате проведенных исследований влияния однократной иммунизации ПАК F. tularensis разных подвидов в дозе 10 мкг на показатели клеточного звена иммунитета белых мышей показано, что доля апоптотических тимоцитов и спленоцитов соответствовала контрольным значениям, что свидетельствует об отсутствии выраженного повреждающего действия всех 4 препаратов на клетки макроорганизма. Несмотря на некоторые отличия в действии ПАК разных подвидов на пролиферативную активность иммунокомпетентных клеток тимуса и селезенки белых мышей, к 14-21-м суткам они нивелировались. Причем уровень ответа спленоцитов на введение всех препаратов ПАК был выше, чем у тимоцитов (33,5±0,9 и 29,8±1,8 соответственно), а на 1-е сутки достоверно превышал этот показатель для ЖТВ (27.9 ± 0.6) . Кроме того, максимальной иммуногенностью обладал препарат ПАК-15, к 21-м суткам доля пролиферирующих клеток селезенки мышей была сопоставима с таковой при вакцинации животных $(25,0\pm1,8$ и $27,4\pm0,9$ соответственно). Уровень пролиферативной активности тимоцитов во все сроки иммуногенеза при введении как препаратов ПАК, так и ЖТВ, был на уровне контрольных значений, что, вероятно, связано с более поздней активацией Т-лимфоцитов по сравнению с В-клетками и, учитывая положительный аллергический тест, с интенсивными процессами миграции иммунокомпетентных клеток.

Изменение фагоцитарных показателей указывает на степень вовлечения иммунокомпетентных клеток в процессы иммунобиологической перестройки вакцинированных против туляремии животных. Показано, что НСТ-редуцирующая активность макрофагов, степень которой выражена фагоцитарным числом (ФЧ), повышается после иммунизации каждым из 4 препаратов ПАК (рисунок). К 14-м суткам иммуногенеза наиболее высокая фагоцитарная активность макрофагов отмечалась у мышей, иммунизированных препаратом ПАК-15.

Изучение протективных свойств препаратов ПАК проводили на модели белых мышей, которых иммунизировали однократно подкожно возрастающими дозами от 5 до 625 мкг, с последующим зара-

Фагоцитарная активность макрофагов белых мышей в HCT-тесте

жением вирулентными штаммами разных подвидов на 21-е сутки в дозе 100 м.к. Протективные свойства препарата ПАК-Utah 112 оценивали только против штамма голарктического подвида. Во всех экспериментах патолого-анатомическая картина и высевы из органов павших животных на селективные питательные среды указывали на гибель от туляремийной инфекции.

Установлено, что все полученные препараты ПАК, независимо от подвидовой принадлежности штамма-продуцента, защищают лабораторных животных от гибели при экспериментальной инфекции, вызванной вирулентными штаммами голарктического и неарктического подвидов (таблица). Для препарата ПАК-A'Cole характерна более низкая иммуногенность против инфекции, вызванной гомологичным штаммом, чем гетерологичным, что согласуется с литературными данными [1]. При экспериментальной туляремии, вызванной штаммом среднеазиатского подвида (заражающая доза $100 \, \mathrm{LD}_{50}$), отмечена $100 \, \%$ выживаемость всех иммунизированных животных (ED₅₀ препаратов 2,24 (1,8÷8,3) мкг) до 21-х суток (срок наблюдения) при 100 % гибели контрольной группы с продолжительностью жизни $(5,6\pm0,4)$ сут. Это может быть связано с более низкой вирулентностью штамма $(LD_{50}5\ \text{м.к.})$. Иммуногенность препарата ПАК-Utah 112 была ниже по сравнению с другими исследованными препаратами ПАК: выживаемость животных составила в среднем 37,5%, средняя иммунизирующая доза препарата — 125,9 $(66,7\div269,4)$ мкг. Возможно, отмеченные отличия в протективных свойствах связаны с биохимическими и иммунохимическими особенностями ПАК из подвида *novicida*.

Напряженность иммунитета определяли для препарата ПАК-15 на модели белых мышей (иммунизирующая доза 100 мкг) против вирулентных штаммов *F. tularensis* 503/840 и В399 А Соle (заражали возрастающими дозами вирулентных штаммов от 1 до 1000 м.к.). Отмечена значительно более низкая напряженность иммунитета при заражении вирулентным штаммом неарктического подвида (индекс иммунитета равен 10) по сравнению с инфекцией, вызванной вирулентным штаммом голарктического подвида (индекс иммунитета составил 1468). Эти данные согласуются с результатами эксперимента по определению иммуногенности препарата ПАК-15 (таблица).

Таким образом, в процессе исследования иммунобиологических свойств препаратов ПАК туляремийного микроба разных подвидов впервые было установлено, что, независимо от подвидовой принадлежности и вирулентности штамма-продуцента, ПАК имеет сходство по иммунобиологическим свойствам: обладает иммуногенностью, выраженной протективной активностью для лабораторных животных и не оказывает повреждающего действия на иммунокомпетентные клетки. Препарат ПАК из F. tularensis subsp. novicida обладает сниженной иммуногенностью и протективностью по сравнению с препаратами ПАК, полученными из штаммов-продуцентов других подвидов. По результатам проведенных иммунологических тестов максимальной иммуномодулирующей активностью обладает ПАК из вакцинного штамма F. tularensis 15 НИИЭГ.

Иммуногенность препаратов ПАК для белых мышей при экспериментальной туляремийной инфекции

Заражающий штамм	Препарат	n/N	Δt, сут	ED_{50} , мкг $(\mathrm{ED}_{50}^{\mathrm{min}} \div \mathrm{ED}_{50}^{\mathrm{max}})$
F. tularensis 503/840 (LD ₅₀ =1 м.к.)	ПАК-15	22/23	20,4±0,9	3,1 (2,4÷11,3)
	ПАК-503	12/24	14,1±3,3	112,2 (48,9÷257)
	ПАК-A'Cole	11/24	13,4±2,7	131,8 (50,1÷407,4)
	ПАК-А 179	14/24	15,3±2,5	33,11 (27,2÷108)
	ПАК-Utah 112	9/24	13,2±3,9	125,9 (66,7÷269,4)
	Контроль	0/6	5,3±0,8	-
F. tularensis B399 A'Cole (LD ₅₀ =1 м.к.)	ПАК-15	10/24	13,2±2,4	95,5 (55,9÷169)
	ПАК-503	13/23	15,5±2,8	66,1 (25,1÷204)
	ПАК-A'Cole	5/23	10,9±1,8	562,3 (251,2÷818)
	ПАК-А 179	16/23	16,45±2,3	16,21 (9,2÷25,1)
	Контроль	0/6	5,8±0,6	-

 $[\]Pi$ р и м е ч а н и е . Δ t – средняя продолжительность жизни с интервалом вероятности (M \pm mt), n/N – отношение выживших к общему числу мышей в группе, ED_{so} – средняя иммунизирующая доза, диапазон min \pm max.

Работа выполнена по государственному контракту № 52-Д/1 от 29.06.2010 г. в рамках реализации федеральной целевой программы «Национальная система химической и биологической безопасности Российской Федерации (2009–2013 гг.)».

СПИСОК ЛИТЕРАТУРЫ

1. Волох О.А., Шепелёв И.А., Фирстова В.В., Храмкова Е.М., Авдеева Н.Г., Самохвалова Ю.И. и др. Оценка иммунобиологической активности препаратов С-комплекса туляремийного микроба, как перспективного компонента химических вакцин.

микробиол., эпидемиол. и иммунобиол. 2007; 3:16–21.
2. Жемчугов В.Е., Дятлов И.А., Кутырев В.В., Волох О.А. Способ получения препарата для активной иммунизации против туляремии. Патент РФ № 2221591, опубл. 20.01.2004. Бюл. № 2.
3. Кологоров А.И., Дмитриева Л.Н., Шиянова А.Е., Тарасов М.А., Поршаков А.М., Попов Н.В. и др. Эпидемиологическая м.А., Поришков А.М., Попов Н.В. и др. Эпидемиологическая ситуация по природно-очаговым и зоонозным инфекциям в Приволжском федеральном округе в 2000–2009 гг. и прогноз на 2010 г. Пробл. особо опасных инф. 2010; 2(104):5–10.

4. Олсуфьев Н.Г. Таксономия, микробиология и лабораторная диагностика возбудителя туляремии. М.: Медицина; 1975.

5. Онищенко Г.Г., Кутырев В.В., редакторы. Лабораторная диагностика опасных инфекционных болезней. Практическое руководство. М.: Медицина; 2009. С. 27–61.

6. Хлебников В.С., Головлев И.Р., Кулевацкий Д.П. и др. Изучение биохимических, антигенных и протективных свойств внешней мембраны возбудителя туляремий. Мол. генет., микро-

внешней мембраны возбудителя туляремии. Мол. генет., микробиол. и вирусол. 1991; 7:15—20.

7. Шепелёв И.А., Волох О.А., Еремин С. А., Дятлов И.А. Оптимизация способа получения С-комплекса туляремийного микроба. Пробл. особо опасных инф. 2006; 2(92):61—4.

8. Barlogie B., Spitzer G., Hart G.S., Johnston D.A., Buchner T. et al. DNA histogram analysis of human hemopoietic cells. Blood. 1976; 2(48):245—58.

9. Golovliov I., Ericsson M., Sandström G. et al. Identification of proteins of F. tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kDa protein. Infect. Immun. 1997; 6(65):2183—89

10. Huntley J.F., Conley P.G., Hagman K.E., Norgard M.V. Characterization of Francisella tularensis outer membrane proteins.

J. Bacteriol. 2007; 2(189):561-74.

11. Splettstoesser W.D., Tomaso H., Dahouk S.A., Neubauer H., Schuff-Werner P.S. Diagnostic procedures in tularemia with special focus on molecular and immunological techniques. J. Vet. Med. 2005; 52:249–61.

12. Tärnvik A., Berglund L. Tularaemia. Eur. Respir. J. 2003; 21(2):361-73.

References (Presented are the Russian sources in the order of citation in the original article)

1. Volokh O.A., Shepelev I.A., Firstova V.V., Khramkova E.M., Avdeeva N.G., Samokhvalova Yu.I. et al. [Evaluation of immunobiological activity of Francisella tularensis "C"-complex preparations as promising component of subunit vaccines]. Zh. Mikrobiol. Epidemiol. Immunobiol. 2007; 3:16–21.

2. Zhemchugov V.E., Dyatlov I.A., Kutyrev V.V., Volokh O.A [Method of

preparation obtainment for active immunization against tularemia]. RF Patent 2221591. 20 Jan 2004.

2221591. 20 Jan 2004.
3. Kologorov A.I., Dmitrieva L.N., Shiyanova A.E., Tarasov M.A., Porshakov A.M., Popov N.V. et al. [Epidemiological situation on natural-focal and zoonotic infections in Privolzhsky Federal District in 2000–2009 and the prognosis for 2010]. Probl. Osobo Opasn. Infek. 2010; 2(104):5–10.
4. Olsuf 'ev N.G. [Taxonomy, Microbiology and Laboratory Diagnostics of Tularemia Agent]. Moscow: Meditsina; 1975. 190 p.
5. Onishchenko G.G., Kutyrev VV., editors. [Laboratory Diagnostics of Particularly Dangerous Infectious Diseases. Guidelines]. Moscow: Meditsina; 2009. P. 27–61.

6. Khlebnikov V.S., Golovlev I.R., Kulevatsky D.P. et al. [Studies of

biochemical, antigen and protective properties of tularemia agent outer-membrane]. Mol. Gen. Microbiol. Virusol. 1991; 7:15–20.

7. Shepelev I.A., Volokh O.A., Eremin S.A., Dyatlov I.A. [Optimization of the techniques for deriving the protective "C"-complex of the tularemia pathogen]. Probl. Osobo Opasn. Infek. 2006; 2(92):61–4.

Kuznetsova E.M., Volokh O.A., Smol'kova E.A., Shchukovskaya T.N., Shepelev I.A., Avdeeva N.G., Kravtsov A.L., Niktforov A.K. Russian Research Anti-Plague Institute "Microbe". Universitetskaya St., 46, Saratov, 410005, Russia. E-mail: microbe@san.ru

Об авторах:

Кузнецова Е.М., Волох О.А., Смолькова Е.А., Щуковская Т.Н., Шепелёв И.А., Авдеева Н.Г., Кравцов А.Л., Никифоров А.К. Российский научно-исследовательский противочумный институт «Микроб». 410005, Саратов, ул. Университетская, 46. E-mail: microbe@san.ru

Поступила 15.10.10.