Т.А.Кульшань, Я.М.Краснов, Ю.В.Лозовский, Н.И.Смирнова

МОЛЕКУЛЯРНОЕ ТИПИРОВАНИЕ МЕТОДОМ MLVA ТИПИЧНЫХ И ГЕНЕТИЧЕСКИ ИЗМЕНЕННЫХ ПРИРОДНЫХ ШТАММОВ VIBRIO CHOLERAE БИОВАРА ЭЛЬТОР

ФКУЗ «Российский научно-исследовательский противочумный институт «Микроб», Саратов

Показана возможность дифференциации методом MLVA типичных и генетически измененных штаммов Vibrio cholerae биовара эльтор, различающихся вирулентностью и эпидемическим потенциалом. Установлено значительное генетическое разнообразие геновариантов, обусловленное, видимо, как их поликлональным происхождением, так и продолжающимися изменениями генома под влиянием меняющихся факторов окружающей среды.

Ключевые слова: Vibrio cholerae биовара эльтор, типичные штаммы, геноварианты, MLVA-типирование.

T.A.Kul'shan', Ya.M.Krasnov, Yu.V.Lozovsky, N.I.Smirnova

Molecular MLVA Typing of Typical and Genetically Altered Natural Strains of Vibrio cholerae El Tor Biovar

Russian Research Anti-Plague Institute "Microbe", Saratov

Displayed is the possibility of differentiation between typical and genetically altered strains of *Vibrio cholerae* biovar El Tor, which vary in their virulence and epidemic potential, by means of MLVA. Determined is a significant genetic diversity of the genevariants, probably, due to their polyclonal origin and continuous alterations within genome under the influence of varying environmental factors.

Key words: Vibrio cholerae biovar El Tor, typical strains, gene-variants, MLVA-typing.

Недавно возникшие геноварианты Vibrio cholerae биовара эльтор отличаются от типичных штаммов этого возбудителя структурой генома профага СТХф, в котором ген ctxB эльтор типа (ctxB3) заменен геном ctxВ холерных вибрионов классического биовара (ctxB1). К настоящему времени эти варианты вытеснили типичные штаммы во многих эндемичных по холере регионах [2, 5, 8, 9, 10]. Поскольку генетически измененные штаммы являются более вирулентными по сравнению с типичными, а также имеют повышенный эпидемический потенциал, существует необходимость дифференциации этих изолятов. Более того, до сих пор не решен вопрос о том, какое происхождение имеют геноварианты - моно- или поликлональное. Существуют две гипотезы относительно их возникновения. Первая состоит в том, что широкое распространение геновариантов является результатом экспансии единственного клона геноварианта, являющегося производным какого-то одного типичного штамма возбудителя холеры эльтор, который возник на определенной территории в результате приобретения им гена ctxB1 от неизвестного пока донора. Согласно второй, такое событие обусловлено мультиклональным возникновением геновариантов в нескольких эндемичных по холере регионах [7, 8]. В этом случае следует ожидать, что генетическое разнообразие геновариантов будет весьма значительным. Для решения этих задач может быть использован метод мультилокусного VNTR-анализа (MLVA), который основан на оценке количества повторов VNTR в вариабельных участках генома. Высокая разрешающая способность и воспроизводимость этого подхода была показана ранее при изучении различных штаммов многих патогенных бактерий, включая возбудителя холеры [4, 6, 7].

Цель работы — изучить возможность дифференциации типичных и измененных штаммов возбудителя холеры методом MLVA, выяснить их филогенетические связи и оценить разнообразие геновариантов.

Материалы и методы

В работе использовано 53 клинических штамма *V. cholerae* биовара эльтор, из которых 2 изолята являлись предпандемическими (1937 г.), а 51 штамм был выделен в различные периоды 7-й пандемии (1965–2010 гг.) в разных регионах России и в странах ближнего и дальнего зарубежья. Среди последних 23 штамма были типичными, а 28 — геновариантами, содержащими в профаге СТХф ген *ctxB*1. Эти штаммы были выделены на территории 14 регионов РФ с 1988 по 2010 год. Для культивирования бактерий использовали бульон и агар LB (рН 7,6). В качестве вариабельных участков генома *V. cholerae* были использованы ранее выявленные локусы.

Выделение ДНК осуществляли в присутствии гуанидинтиоцианата с использованием лицензированных коммерческих наборов для выделения ДНК (ДНК-сорб, «AmpliSens», Россия) в соответствии с инструкцией к используемому набору.

Амплификацию ДНК проводили с использованием программируемого термостата с горячей крышкой iCycler «IQ5» (BioRad, CША).

Определение нуклеотидной последовательности

ДНК полученных ПЦР-фрагментов проводили с помощью генетического анализатора «3500хL Genetic Analyzers» (Applied Biosystems, США). Первичное выравнивание и сравнение полученных нуклеотидных последовательностей ДНК осуществляли с помощью программы МЕGА 5.0. Для определения числа тандемных повторов использовали программу «Тапdem Repeats Finder v. 4.0». Затем нуклеотидные последовательности ДНК были экспортированы в базу данных модульного пакета программ «ВіоNumerics 6.6» (Applied Maths, Бельгия) и на их основе построены филогенетические деревья методом «максимальной бережливости» (Maximum parsimony tree) с использованием категорического (categorical) коэффициента.

Вариабельность VNTR-локусов оценивали с помощью индекса разнообразия Нея (DI) [3], определенного по формуле DI= $1-\sum p^2$, где DI – индекс разнообразия Нея; р – частота встречаемости аллеля (отношение числа аллелей данного типа к общему числу аллелей).

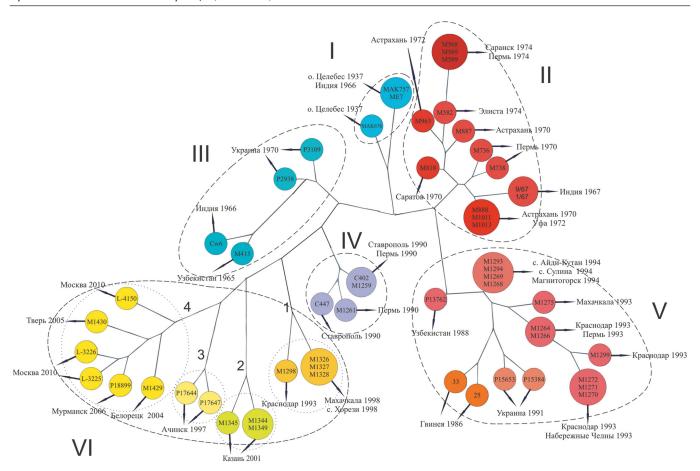
Результаты и обсуждение

Анализ полученных данных показал, что среди 53 штаммов было выявлено 37 MLVA-типов. Это означает, что каждый изолят, отличающийся от других по MLVA-профилю, имеет свой генотип и, следовательно, изученные штаммы относятся к 37 генотипам (таблица). При этом 23 типичных штамма, выделенные в разные периоды 7-й пандемии (1965–1990 гг.), принадлежали к 16 генотипам, тогда как 28 штаммов геновариантов (1988–2010 гг.) – к 21 генотипу. Эти данные свидетельствуют о значительной вариабельности генома обеих групп взятых штаммов, которая, возможно, обусловлена временной (1937–2010 гг.) и географической (Индонезия, Индия, Узбекистан, Украина, Россия) разобщенностью изолятов, а также связана с эволюцией возбудителя.

Анализ филогенетического дерева, построенного на основе MLVA, позволил выделить шесть клональных комплексов, каждый из которых содержал группу близкородственных штаммов, имеющих один и тот же или близкий генотип (рисунок). В эти комплексы входят следующие группы штаммов: предпандемические и атипичные пандемические изоляты (I), пандемические типичные штаммы (II, III, IV) и их геноварианты (V, VI).

Клональный комплекс I был представлен тремя штаммами, относящимися к двум генотипам, два из которых (МАК757 и МАК676) были предпандемическими, т.е. изолированными от больных холерой до начала 7-й пандемии (1937 г.) на о. Целебес, и один (МЕ7) относился к «старым» штаммам с атипичной структурой генома, изолированным в самом начале 7-й пандемии (1966 г.) в Индии. Их аллельные идентификационные формулы 10,6,7,5,13/10,6,7,13,16 указывают на их клональное происхождение. Основные генетические особенности этих штаммов

заключались в том, что в их геноме присутствовал профаг СТХф с геном *ctxB* классического типа и отсутствовали острова пандемичности VSP-I и VSP-II, а также профаг RS1ф. Что касается штамма МЕ7, то, несмотря на то, что он был выделен во время 7-й пандемии, структура его генома (отсутствовали VSP-I и VSP-II и профаг RS1ф) была очень близка к таковой предпандемических изолятов. Возможно, что эти штаммы, наряду с предпандемическими, были предшественниками типичных штаммов возбудителя холеры эльтор, которые могли сформироваться в результате последовательных генетических событий.


Все типичные штаммы, образовавшие II, III и IV комплексы, несут профаг СТХф с геном ctxB3 и содержат в первой хромосоме два острова пандемичности – VSP-I и VSP-II, а также профаг RS1ф. Среди них самым большим является комплекс II, который представлен 14 изолятами, относящимися к девяти различным генотипам (рисунок). Согласно данным эпидемиологического анализа эти штаммы в 1970 г. были завезены в Астраханскую область через Иран, где имели место крупные вспышки. Затем в период 1970-1975 гг. происходило последующее распространение холеры водным путем в другие города Поволжья и центрального региона России [1]. Сопоставление аллельных идентификационных формул этих изолятов (таблица) показывает, что они различались между собой лишь по числу повторов в двух наиболее вариабельных локусах второй хромосомы. В то же время локусы из первой хромосомы были идентичны. Присутствие в геномах трех гомологичных локусов может свидетельствовать о клональном происхождении этих изолятов. Что касается двух других минорных комплексов III и IV, то они включают в себя по четыре штамма (Украина, 1970 г.; Ставрополь и Пермь, 1990 гг.), которые отличаются как друг от друга, так и от штаммов II комплекса по структуре всех пяти локусов (таблица, рисунок). Это может означать, что вспышки холеры в Украине (1970), Перми и Ставрополе (1990) были связаны с независимым заносом других клонов возбудителя, имеющих генотипические отличия от штаммов II клонального комплекса. Однако небольшая степень генетических различий по MLVA-профилю между типичными штаммами из трех разных клональных комплексов свидетельствует о их близком родстве между собой.

Особый интерес представляют вспышки и отдельные случаи холеры на территории России, зарегистрированные в последующий период 7-й пандемии (1993—2010 гг.), вызванные заносом генетически измененных вариантов возбудителя.

Согласно полученным данным, геноварианты четко разделены на два больших клональных комплекса (V и VI), в каждый из которых входит по 14 (10 генотипов) и 15 (12 генотипов) штаммов соответственно (рисунок). Их аллельные идентификационные формулы существенно отличаются от таковых типичных штаммов (таблица, рисунок).

Генотипы типичных и измененных штаммов V. cholerae биовара эльтор, выделенные в Российской Федерации и странах ближнего и дальнего зарубежья

Генотип	Штамм	Аллель гена <i>ctxB</i>	Год и место выделения	Аллели (кратность повторо локусов
1	MAK676	Class	1937, о. Целебес	10,6,7,15,13
2	MAK757	Class	1937, о. Целебес	10,6,7,13,16
	ME7	El	1966, Индия	
3	M415	El	1965, Узбекистан	7,6,7,14,21
4	CW6	El	1966, Индия	7,6,7,14,30
5	9/67	El	1967, Индия	8,6,7,15,24
	1/67	El	1967, Индия	
6	M887	El	1970, Астрахань	8,6,7,21,25
7	M736	El	1970, Пермь	8,6,7,18,26
0	M738	El	1970, Пермь	0.67.10.25
8	M818	El	1970, Саратов	8,6,7,18,25
9	P2938	El	1970, Украина	9,6,7,14,21
10	P3109	El	1970, Украина	9,6,7,14,27
11	M963	El	1972, Астрахань	8,6,7,20,25
12	M888	El	1970, Астрахань	8,6,7,18,24
13	M1011	El	1972, Уфа (Башкирия)	
	M1013	El	1972, Уфа (Башкирия)	
14	M589	El	1974, Пермь	8,6,7,19,23
	M568 M569	El El	1974, Саранск (Мордовия) 1974, Саранск (Мордовия)	0.671522
1.5				8,6,7,15,23
15	M582	El	1974, Элиста (Калмыкия)	8,6,7,19,25
16	P13762	Class	1988, Узбекистан	8,7,7,15,20
17	M1261	El	1990, Пермь	9,6,8,19,20
18	M1259 C402	El El	1990, Пермь 1990, Ставрополь	9,6,8,23,20
19	C447	El	1990, Ставрополь	9,6,8,22,20
20	P15384	Class	1991, Украина	8,7,8,16,14
21	P15653	Class	1991, Украина	8,7,8,15,14
22	M1271	Class	1993, Набережные Челны	8,7,8,11,21
	M1271 M1270	Class	1993, Набережные Челны	0,7,0,11,21
	M1272	Class	1993, Краснодар	
23	M1264	Class	1993, Краснодар	8,7,8,10,208,7,8,11,20
	M1266	Class	1993, Пермь	
24	M1275	Class	1993, Махачкала (Дагестан)	8,7,8,14,20
25	M1294	Class	1994, с. Айди-Кутан (Дагестан)	8,7,8,15,20
	M1269	Class	1994, Магнитогорск	
	M1268	Class	1994, Магнитогорск	
	M1293	Class	1994, с. Сулина (Дагестан)	
26	M1326	Class	1998, с. Рубас (Дагестан)	9,7,8,15,22
	M1327	Class	1998, с. Хорези (Дагестан)	
	M1328	Class	1998, с. Хорези (Дагестан)	
27	M1298	Class	1993, Краснодар	9,7,8,11,21
28	M1344	Class	2001, Казань	11,7,6,21,13
	M1349	Class	2001, Казань	
29	M1345	Class	2001, Казань	12,7,6,21,13
30	P17647	Class	1997, Ачинск	9,8,6,16,24
31	P17644	Class	1997, Ачинск	9,8,6,15,24
32	M1429	Class	2004, Уфа (Башкирия)	9,3,6,20,17
33	M1430	Class	2005, Тверь	9,3,6,18,18
34	P18899	Class	2006, Мурманск	9,3,6,30,19
35	Л-3225	Class	2010, Москва	9,3,6,14,19
36	Л-3226	Class	2010, Москва	9,3,6,15,19

Филогенетическое дерево, построенное методом «максимальной бережливости» (maximum parsimony tree, Bionumerics, v.6.6) на основе MLVA по 5 локусам различных штаммов *Vibrio cholerae* биовара эльтор. Штрихами выделены VI клональных комплексов, которые образуют предпандемические (I) изоляты, пандемические типичные (II, III, IV) и генетически измененные (V и VI) штаммы. В кружках указаны изученные штаммы, место и год их выделения

Представленные данные свидетельствуют о том, что MLVA-типирование действительно позволяет дифференцировать генетически измененные и типичные штаммы возбудителя холеры.

Более того, выявлены существенные генетические различия между разными группами геновариантов, завезенными на территорию России из разных эндемичных очагов и в различные временные периоды: в 1991–1999 гг. (V комплекс) и 1997–2010 гг. (VI комплекс). У сравниваемых групп штаммов четко выражена разная аллельность всех 5 локусов (таблица). Так, если аллельная идентификационная формула геновариантов из V комплекса по трем наименее вариабельным локусам 8,7,8,/8,7,7, то у изолятов VI комплекca - 9.8,6/9,7,8/11,7,6/12,7,6/9,3,6. Эти данные могут служить в пользу предположения о том, что сравниваемые группы геновариантов не ведут своего происхождения от одного клона. Следовательно, эпидемии холеры, зарегистрированные в современный период в различных странах, скорее всего, вызваны геновариантами, имеющими поликлональное происхождение и возникшими, видимо, одновременно или последовательно в разных эндемичных по холере регионах. Это предположение полностью совпадает с гипотезой о различном происхождении геновариантов, высказанных ранее рядом исследователей [6, 7, 8].

Кроме того, обнаружена заметная гетероген-

ность геновариантов, входящих в один и тот же клональный комплекс. Так, VI комплекс состоит из четырех различных подгрупп, в состав которых входят геноварианты, изолированные в разные годы и относящиеся к разным генотипам: 26 (1998 г.); 28-29 (2011 г.); 30-31 (1997 г.) (таблица, рисунок). Сопоставление результатов MLVA-типирования с данными молекулярно-эпидемиологического анализа выявило определенные закономерности в распределении изолятов по подгруппам. Установлено, что к 29, 30, 31 и 32 генотипам относятся штаммы из 1-й и 2-й подгрупп, выделенные от больных в период эпидемических осложнений в Краснодаре в 1993 г., в Дагестане в 1998 г., Казани в 2001 г. и отличающиеся от типичных изолятов только по структуре профага СТХо.

Иная картина наблюдается в случае штаммов из 3-й и 4-й подгрупп. Установлено, что в их геноме, в отличие от указанных штаммов, присутствует делетированный остров пандемичности VSP-II. При этом распределение штаммов между двумя подгруппами было прямо связано с размером делеции. У штаммов 3-й подгруппы из заносного очага в Ачинске (1997 г.) в VSP-II было делетировано лишь четыре гена, тогда как все изоляты из 4-й подгруппы, выделенные в более поздние годы (2004–2010 гг.), имели более протяженную делецию (7 генов). Поскольку существует

прямая связь между структурой VSP-II и эпидемическим потенциалом штаммов [11], то выявленная возможность дифференциации изолятов с интактным и делетированным островом пандемичности методом MLVA заслуживает большого внимания.

Таким образом, в результате MLVA-типирования по пяти VNTR-локусам обнаружено, что 53 изученных штамма относятся к 37 различным генотипам. Установлено, что этот метод позволяет дифференцировать типичные штаммы V. cholerae биовара эльтор и их геноварианты, которые отличаются друг от друга по вирулентности и эпидемическому потенциалу. Получены данные о генетическом разнообразии геновариантов, которое, видимо, связано как с их поликлональным происхождением, так и с продолжающимися изменениями генома под влиянием меняющихся факторов окружающей среды.

Работа выполнена по государственному контракту № 53-Д от 04.06.2012 в рамках реализации Федеральной целевой программы «Национальная система химической и биологической безопасности Российской Федерации (2009–2013 годы)» и при поддержке гранта РФФИ № 12-04-00285а.

СПИСОК ЛИТЕРАТУРЫ:

1. Кологоров А.И., Кедрова О.В., Пахомов Д.А., Пискунова

1. Кологоров А.И., Кедрова О.В., Пахомов Д.А., Пискунова Н.В., Ковтунов А.И., Васенин А.С. и др. Закономерности распространения холеры в бассейне Волги в 1970–1973 гг. Пробл. особо опасных инф. 2010; 2(104):22–8.
2. Смирнова Н.И., Заднова С.П., Шашкова А.В., Кутырев В.В. Вариабельность генома измененных вариантов Vibrio cholerae биовара Эль Тор, завезенных на территорию России в современный период. Мол. генет., микробиол. и вирусол. 2011; 4.11 «2

4:11-8.
3. Adair D.M., Worsham P.L., Hill K.K., Klevytska A.M., Jackson P.J., Friedlander A.M. et al. Diversity in a variable-number tandem repeat from Yersinia pestis. J. Clin. Microbiol. 2000; 38(4):1516-9.
4. Choi S.Y., Lee J.H., Jeon Y.S., Lee H.R., Kim E.J., Ansaruzzaman M. et al. Multilocus variable-number tandem repeat analysis of Vibrio cholerae O1 El Tor strains harbouring classical

toxin B. J. Med. Microbiol. 2010; 59(3):763–9.
5. Hasan N.A., Choi S.Y., Eppinger M., Clark P.W., Chen A., Alam M., Haley B.J. et al. Genomic diversity of 2010 Haitian cholera outbreak strains. Proc. Natl. Acad. Sci. USA 2012; 6:1–8.
6. Kendall E.A., Chowdhury F., Begum Y., Khan A.I., Li S., Thierer J.H. et al. Relatedness of Vibrio cholerae O1/O139 isolates from patients and their household contacts, determined by multilocus variable-number tandem-repeat analysis. J. Bacteriol. 2010; 192(17):4367–76

192(17):4367–76.
7. Lam C., Octavia S., Reeves R.P., Lan R. Multi-locus variable number tandem repeat analysis of 7th pandemic Vibrio cholerae.
BMC Microbiol. 2012; 12(82):1471–2180.
8. Morita M. Emergence and genetic diversity of El Tor Vibrio

cholerae O1 that possess classical biotype ctxB among travel-associated cases of cholera in Japan. J. Med. Microbiol. 2010; 59:708–12.

9. Morita M., Ohnishi M., Arakawa E., Bhuiyan N.A., Nusrin S., Alam M. et al. Development and validation of a mismatch amplification mutation PCR assay to monitor the dissemination of an emerging variant of *Vibrio cholerae* OI biotype El Tor. Microbiol. Immunol. 2008; 52(6):314–7.

Immunol. 2008; 52(6):314–/.

10. Safa A., Sultana J., Cam P.D., Mwansa J.C., Kong R.Y. Vibrio cholerae O1 hybrid El Tor strains in Asia and Africa. Emerg. Infect. Dis. 2008; 14:987–8.

11. Taviani E., Grim C.J., Choi J., Chun J., Haley B., Hasan N.A. et al. Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis. FEMS Microbiol. Lett.. 2010; 308(2):130–7.

References (Presented are the Russian sources in the order of citation in the original article)

1. Kologorov A.I., Kedrova O.V., Pakhomov D.A., Piskunova N.V., Kovtunov A.I., Vasenin A.S. et al. [Regularities of cholera spread in the Volga Basin in 1970–1973]. Probl. Osobo Opasn. Infek. 2010; (104):22–8.

2. Smirnova N.I., Zadnova S.P., Shashkova A.V., Kutyrev V.V. [Variability of the genome of altered Vibrio cholerae variants biovar £1 Tor, imported into the territory of the Russian Federation in the modern period]. Mol. Genet. Mikrobiol. Virusol. 2011; 4:11–8.

Authors:

Kul'shan' T.A., Krasnov Ya.M., Lozovsky Yu.V., Smirnova N.I. Russian Research Anti-Plague Institute "Microbe". 46, Universitetskaya St., Saratov, 410005, Russia. E-mail: rusrapi@microbe.ru

Об авторах:

Кульшань Т.А., Краснов Я.М., Лозовский Ю.В., Смирнова Н.И. Российский научно-исследовательский противочумный институт «Микроб». 410005, Саратов, ул. Университетская, 46. E-mail: rusrapi@microbe.ru

Поступила 28.06.12.