Preview

Problems of Particularly Dangerous Infections

Advanced search

The Study of the Immune Layer to the Cholera Agent in Individuals Living in the Republic of Guinea

https://doi.org/10.21055/0370-1069-2019-3-100-105

Abstract

For a reliable assessment of the presense of the immune layer to cholera agent, it is necessary to determine the level of specific antibodies in human blood serum. To detect specific anticholera antibodies serological methods are used, aimed to identify agglutinating, vibriocidal and toxin neutralizing antibodies. At the same time, the stated methods have several drawbacks which can be eliminated when using biological microarrays to detect specific antibodies. Object of work. Assessment of the level of the immune layer to cholera agent in individuals residing in the territory of the Republic of Guinea, using a biological microchip. Materials and methods. 190 blood serum samples of people living on the territory of three provinces of the Republic of Guinea, collected over the period of May-October 2016 were studied. The detection of specific antibodies to antigens of V. cholerae was performed using the immunochip for serodiagnosis in the indirect analysis. V. cholerae O-antigens and cholera toxin were used as specific antigens for sensibilization of the immunochip surface. Results and discussion. As a result of the analysis, using immunochip, specific antibodies to O1 and O139-antigens of V. cholerae at the titer of 1:100 were not detected in any of the cases. At the same time, antibodies to cholera toxin were found in 66 samples (34.7 %); titers varied from 1:100 to 1:1600, being 1:100 in 59 samples, 1:400 - in 1 sample, 1:800 - in 2 samples, 1:1600 - in 4 samples. The absence of statistically significant differences depending on the gender of the examined people and the territory of their residence was noted. The obtained results can be explained by the fact that antibodies to cholera toxin are more resistant and circulate longer in human serum than antibodies to O-antigens. Studies have demonstrated the presence of IgG antibodies complementary to cholera toxin in sera, which may indicate both the contact of the population with the cholera pathogen and the formation of post-vaccinal immunity.

About the Authors

D. V. Utkin
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

46, Universitetskaya St., Saratov, 410005.



E. V. Naidenova
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

46, Universitetskaya St., Saratov, 410005.



K. A. Nikiforov
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

46, Universitetskaya St., Saratov, 410005.



A. V. Boiko
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

46, Universitetskaya St., Saratov, 410005.



D. A. Agafonov
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

46, Universitetskaya St., Saratov, 410005.



M. N. Lyapin
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

46, Universitetskaya St., Saratov, 410005.



A. A. Lopatin
«Plague Control Сenter»
Russian Federation

4, Musorgskogo St., Moscow, 127490.



I. Bangoura
Research Institute of Applied Biology of Guinea
Guinea

Kindia.



T. D. Camara
Research Institute of Applied Biology of Guinea
Guinea

Kindia.



S. Boumbaly
Research Institute of Applied Biology of Guinea
Guinea

Kindia.



M. Y. Boiro
Research Institute of Applied Biology of Guinea
Russian Federation

Kindia.



References

1. Moskvitina E.A Yanovich E.G., Kruglikov V.D., Titova S.V, Kurilenko M.L., Pichurina N.L., Vodop'yanov A.S., Levchenko D.A., Ivanova S.M., Vodop'yanov S.O., Oleynikov I.P. [Cholera Forecast for the Year 2019 Based on Assessment of Epidemiological Situation Around the World, Across CIS and Russia in 2009-2018]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2019; 1:64-73. DOI: 10.21055/0370-1069-2019-1-64-73.

2. World Health Organization. Wkly Epidemiol. Rec. 2018, 93(38):489-500. (Cited 15 July 2019). [Internet] Available from: https://apps.who.int/iris/bitstream/handle/10665/274654/WER9338. pdf?ua=1.

3. Grout L., Martinez-Pino I., Ciglenecki I Keita S., Diallo A.A., Traore B., Delamou D., Toure O., Nicholas S., Rusch B., Staderini N., Serafini M., Grais R.F., Luquero F.J. Pregnancy Outcomes after a Mass Vaccination Campaign with an Oral Cholera Vaccine in Guinea: A Retrospective Cohort Study. PLoS Negl. Trop. Dis. 2015; 9(12):e0004274. DOI: 10.1371/journal.pntd.0004274.

4. Grishin E.V, Valyakina T.I. [Obtaining of monoclonal antibodies against cholera toxin and heat labile enterotoxin of E. coli for development of the toxins diplex analysis in environmental specimens]. Biotechnologia Acta. 2013; 6(4):19-32. DOI: 10.15407/biotech6.04.019.

5. Levine M.M., Young C.R., Hughes T.P., O’Donnel S., Black R.E., Clements M.L., Robins-Browne R., Lim Y.-L. Duration of serum antitoxin response following Vibrio cholerae infection in North Americans: relevance for seroepidemiology. Am. J. Epidemiol. 1981; 114(3):348-54. DOI: 10.1093/oxfordjournals.aje.a113201.

6. Methodological Regulations. MR 4.2.2315-08 “Serological methods in cholera diagnosis”. Supplement to MR 4.2.2218-07 “Laboratory diagnostics of cholera” . Approved by the Head of the Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human welfare, Chief State Sanitary Officer of the Russian Federation, G.G. Onishchenko on January 18, 2008.

7. Onishchenko G.G., Bragina I.V., Ezhlova E.B., Demina Yu.V, Sheenkov N.V., Balakhonov S.V, Urbanovich L.Ya., Ganin VS., Mironova L.V, Zagoskina T.Yu., Noskova O.A., Kulikalova E.S., Basov E.A., Tokareva L.E., Taikova T.S., Dolgova T.M. [Guidelines for practice classes on laboratory diagnosis of cholera]. Irkutsk; 2012. 92 p.

8. Katty D., editor. [Antibodies. Methods]. M.: “Mir”; 1991. Vol. 1. 287 p.

9. Yuan J., Wang E., Fox B. A Immune Monitoring Technology Primer: protein microarray («seromics»). J. Immunother. Cancer. 2016; 4:2. DOI: 10.1186/s40425-016-0106-4.

10. Utkin D.V, Osina N.A., Kireev M.N., Spitsyn A.N., Shcherbakova S.A. {Biological microchip for the detection and multi-parameter analysis of anti-cholera antibodies]. RF Patent No 2528099, publ. September 10, 2014. Bulletin No. 25.

11. Utkin D.V, Osina N.A., Spitsyn A.N., Kireev M.N., Gromova O.V, Zakharova T.L., Naidenova E.V, Kuklev VE. [The development of biochip to detect anti-cholera antibodies in human blood serum]. Klinicheskaya Laboratornaya Diagnostika [Russian Clinical Laboratory Diagnostics]. 2015; 60(2):50-3.

12. Rebaudet S., Mengel M.A., Koivogui L., Moore S., Mutreja A., Kande Y., Yattara O., Keita VS., Njanpop-Lafourcade B.-M., Fournier P.-E., Garnotel E., Keita S., Piarroux R. Deciphering the Origin of the 2012 Cholera Epidemic in Guinea by Integrating Epidemiological and Molecular Analyses. PLoS Negl. Trop. Dis. 2014; 8(6):e2898. DOI: 10.1371/journal.pntd.0002898.

13. World Health Organization. Cholera. Wkly Epidemiol Rec. 2014; 89(31):345-56. (Cited 15 July 2019). [Internet]. Available from: http://www.who.int/wer/2014/wer8931.pdf7uaM.

14. Martinez-Pino I., Luquero F.J., Sakoba K., Sylla S., Haile M., Grais R.F., Ciglenecki I., Quilici M.-L., Page A.-L.Use of a Cholera Rapid Diagnostic Test during a Mass Vaccination Campaign in Response to an Epidemic in Guinea, 2012. PLoS Negl. Trop. Dis. 2013; 7(8):e2366. DOI: 10.1371/journal.pntd.0002366.

15. Grzhibovsky A.M. [Confidence intervals for proportions]. Ekologiya Cheloveka [Human Ecology]. 2008; 5:57-60.


Review

For citations:


Utkin D.V., Naidenova E.V., Nikiforov K.A., Boiko A.V., Agafonov D.A., Lyapin M.N., Lopatin A.A., Bangoura I., Camara T.D., Boumbaly S., Boiro M.Y. The Study of the Immune Layer to the Cholera Agent in Individuals Living in the Republic of Guinea. Problems of Particularly Dangerous Infections. 2019;(3):100-105. (In Russ.) https://doi.org/10.21055/0370-1069-2019-3-100-105

Views: 1093


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)