Identification of Dengue Fever Markers by Dot Immunoasay
https://doi.org/10.21055/0370-1069-2019-3-81-86
Abstract
The aim. Development of diagnostic kit for identifying markers of dengue fever at all stages of the disease. Materials and methods. In blood serum from patients with suspected dengue fever, NS1 antigen and specific IgM and IgG were detected by immune chromatography, dot immunoassay, enzyme-linked immunosorbent assay, using commercial test systems, as well as the “Dengue Spectrum” experimental kit. Results and discussion. A diagnostic kit has been developed for the detection of dengue fever markers, based on the mechanism of simultaneous differential detection of the agent NS1 protein and IgM and IgG class antibodies with the formation of specific complexes between markers from the test sample and known capture immune reagents, in a certain order, discretely fixed on a dense substrate. It was found that the effective detection of specific IgG and IgM to dengue virus can be carried out according to the scheme in which IgG is captured on the total antigen of the virus with detection using labeled anti-human IgG antibodies, and IgM is detected by capture on anti-human IgM antibodies with detection using total viral antigen. Detection of dengue virus NS1 protein can be performed using a substrate with immobilized monoclonal antibodies to NS1 and a gold immune sol bound to antibodies against NS1. This protocol of the dot analysis provides the limit for determining the recombinant analogue of the NS1 protein equal to 100 ng/ml. Comparative testing of the kit against the panel of clinical samples showed a good agreement between the results and the data obtained using imported commercial tests. The developed kit can be used for screening clinical samples, both in laboratory and in the field.
About the Authors
A. G. PoltavchenkoRussian Federation
Kol’tsovo, Novosibirsk Region, 630559.
V. A. Ternovoi
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
A. V. Eorsh
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
P. V. Filatov
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
R. B. Bayandin
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
A. O. Sementsova
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
L. I. Eremeeva
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
V. B. Loktev
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
A. P. Agafonov
Russian Federation
Kol’tsovo, Novosibirsk Region, 630559.
References
1. Guzman M.G., Harris E. Dengue. Lancet. 2015; 385(9966):453-65. DOI: 10.1016/S0140-6736(14)60572-9.
2. Monteiro D.C.S, Souza N.V., Amaral J.C., Lima K.B., Araujo FM.C., Ramalho I.L.C., Martins V.E.P, Colares J.K.B., Cavalcanti L.PG., Lima D.M. Dengue: 30 years of cases in an endemic area. Clinics (SaoPaulo). 2019; 74:e675. DOI: 10.6061/clinics/2019/e675.
3. Guo C., Zhou Z., Wen Z., Liu Y, Zeng C., Xiao D., Ou M., Han Y, Huang S., Liu D., Ye X., Zou X., Wu J., Wang H., Zeng E.Y, Jing C., Yang G. Global Epidemiology of Dengue Outbreaks in 1990-2015: A Systematic Review and Meta-Analysis. Front. Cell. Infect. Microbiol. 2017; 7:317. DOI: 10.3389/fcimb.2017.00317.
4. World Health Assembly resolution WHA58.3 Revision of the International Health Regulations. (Cited 13 Sept 2019) [Internet]. Available from: http://apps.who.int/gb/archive/e/ewha58.html.
5. Sergeeva E.I., Ternovoi V.A., Chausov E.V., Berillo S.A., Demina O.K., Shikov A.N., Plasunova I.V., Kartashov M.J., Agafonov A.P. Imported cases of dengue fever in Russia during 2010-2013. Asian Pac. J. Trop. Med. 2015; 8(2):90-3. DOI: 10.1016/S1995-7645(14)60194-2.
6. Ganushkina L.A., Patraman I.V., Rezza G., Migliorini L., Litvinov S.K., Sergiev V.P. Detection ofAedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia. Vector Borne ZoonoticDis. 2016; 16(1):58-60. DOI: 10.1089/vbz.2014.1761.
7. Larichev V.F., Sayfullin M.A., Akinshina Yu.A., Khutoretskaya N.V., Butenko A.M. Imported cases of arbovirus in-fections in the Russian Federation. Epidemiologiya i Infekcionnye Bolezni [Epidemiology and Infectious Diseases]. 2012; (1):35-8.
8. Slon Campos J.L., Poggianella M., Marchese S., Mossenta M., Rana J., Arnoldi F., Bestagno M., Burrone O.R. DNA-immunisation with dengue virus E protein domains I/II, but not domain III, en¬hances Zika, West Nile and Yellow Fever virus infection. PLoS One. 2017; 12(7):e0181734. DOI: 10.1371/journal.pone.0181734.
9. Bakhmeteva S.V., Pukhovskaya N.M., Zdanovskaya N.I., Ivanov L.I., Belozerova N.B., Utkina O.M., Zhuravlev YA., Larichev V.F. Etiological decoding of imported cases of tropical fevers in the Far Eastern Region. [Far Eastern Journal of Infectious Pathology]. 2014; 25:91-3.
10. Keasey S.L., Pugh C.L., Jensen S.M.R., Smith J.L., Hontz R.D., Durbin A.P., Dudley, D.M., O’Connor D.H., Ulrich R.G. Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity. Clin. Vaccine Immunol. 2017; 24(4):pii: e00036-17. DOI: 10.1128/CVI.00036-17.
11. Lindenbach B.D., Murray C.L., Thiel H-J., Rice C.M. Flaviviridae. In: Knipe D.M., Howley P.M., editors. Fields virology. 6th ed. Lippincott Williams & Wilkins; 2013. P. 712-46.
12. Kuhn R.J., Zhang W., Rossmann M.G., Pletnev S.V., Corver J., Lenches E., Jones C.T., Mukhopadhyay S., Chipman P.R., Strauss E.G., Baker T.S., Strauss J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002; 108(5):717-25. DOI: 10.1016/s0092-8674(02)00660-8.
13. Balsitis S.J., Williams K.L., Lachica R., Flores D., Kyle J.L., Mehlhop E., Johnson S., Diamond M.S., Beatty P.R., Harris E. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog. 2010; 6(2):e100070. DOI: 10.1371/journal.ppat.1000790.
14. Ho L.J., Wang J.J., Shaio M.F., Kao C.L., Chang D.M., Han S.W., Lai J.H. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J. Immunol. 2001; 166(3):1499-506. DOI: 10.4049/jimmunol.166.3.1499.
15. Zellweger R.M., PrestWood T.R., Shresta S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe. 2010; 7(2):128-39. DOI: 10.1016/j.chom.2010.01.004.
16. Akinshina Yu.A., Larichev V.F., Sayfullin M.A., Mardanly S.G., Butenko A.M. Comparative use of the experimental ELISA test system of DI. Ivanovsky Research Institute of Virology “IFA-IGM-DENGE” (Russia) and the company Euroimmun ANTI-DENGUE VIRUS ELISA IGM (Germany) for serological diagnostics of den¬gue fever. Epidemiologiya i Infekcionnye Bolezni [Epidemiology and Infectious Diseases]. 2017; 22(1):4-8. DOI: 10.18821/1560-9529-2017-22-1-4-8.
17. Poltavchenko A.G., Zaytzev B.N., Ersh A.V., Korneev D.V., Taranov O.S., Filatov P.V., Nechitaylo O.V. The selection and optimization of the detection system for self-contained multiplexed dot-immunoassay. J. Immunoassay Immunochem. 2016; 37(5):540-554. DOI: 10.1080/15321819.2016.1174134.
18. Poltavchenko A.G., Zaitsev B.N., Ersh A.V., Taranov O.S., Korneev D.V., Nikonov A.M. Selection of Substrate Material for Protein Matrices. Prot. Met. Phys. Chem. Surf. 2016; 52(2):301-7. DOI: 10.1134/S2070205116020234.
19. Niu C., Huang Y, Wang M., Huang D., Li J., Huang S., Yang F., Wan C., Zhang R. Differences in the Transmission of Dengue Fever by Different Serotypes of Dengue Virus. Vector Borne Zoonotic Dis. 2019. DOI: 10.1089/vbz.2019.2477.
Review
For citations:
Poltavchenko A.G., Ternovoi V.A., Eorsh A.V., Filatov P.V., Bayandin R.B., Sementsova A.O., Eremeeva L.I., Loktev V.B., Agafonov A.P. Identification of Dengue Fever Markers by Dot Immunoasay. Problems of Particularly Dangerous Infections. 2019;(3):81-86. (In Russ.) https://doi.org/10.21055/0370-1069-2019-3-81-86