Preview

Problems of Particularly Dangerous Infections

Advanced search

Rapid Detection of Orthopoxviruses

https://doi.org/10.21055/0370-1069-2021-3-106-113

Abstract

The aim of the study was to develop a sensitive and fast immunochemical test for the detection of orthopoxviruses (OPXV) in the “point of care” format.

Materials and methods. The analyses were performed in cultured crude and purifed preparations of vaccinia virus, cowpoxvirus, rabbitpoxvirus and ectromelia virus, as well as in the blood and tissue suspensions of infected mice and rabbits. OPXV-antigen was detected by one-stage and two-stage protocols of dot-immunoassay based on flat protein arrays using rabbit polyclonal antibodies as capture and detection reagents.

Results and discussion. The results show that the detection limit of OPXV is inversely related to the degree of their purifcation. The one-stage (rapid) protocol is specifc and allows detecting OPXV in crude culture samples of the virus and in clinical samples in the range of 104–103 PFU/ml within 39 minutes. Rapid dot-immunoassay can be applied to detect or exclude the presence of a viral threat in samples and can be useful in various aspects of biosafety provision. The simplicity of the one-stage protocol, the possibility to visually account the results and easy interpretation of the results allow the rapid test to be used in the “point of care” format.

About the Authors

A. G. Poltavchenko
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk region, Russian Federation, 630559



A. V. Ersh
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk region, Russian Federation, 630559



P. V. Filatov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk region, Russian Federation, 630559



N. D. Ushkalenko
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk region, Russian Federation, 630559



S. N. Yakubitsky
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk region, Russian Federation, 630559



Al. A. Sergeev
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk region, Russian Federation, 630559



D. N. Shcherbakov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk region, Russian Federation, 630559



References

1. Shchelkunov S.N., Marennikova S.S., Moyer R.W. Orthopoxviruses Pathogenic for Humans. New York: Springer; 2005. 425 p.

2. Shchelkunov S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013; 9(12):e1003756. DOI: 10.1371/journal.ppat.1003756.

3. Whitley R.J. Smallpox: a potential agent of bioterrorism. Antiviral Res. 2003; 57(1–2):7–12. DOI: 10.1016/s0166-3542(02)00195-x.

4. Wallin A., Luksiene Z., Zagminas K., Surkiene G. Public health and bioterrorism: renewed threat of anthrax and smallpox. Medicina (Kaunas). 2007; 43(4):278–84.

5. Rimoin A.W., Mulembakani P.M., Johnston S.C., Smith J.O., Kisalu N.K., Kinkela T.L., Blumberg S., Thomassen H.A., Pike B.L., Fair J.N., Wolfe N.D., Shongo R.L., Graham B.S., Formenty P., Okitolonda E., Hensley L.E., Meyer H., Wright L.L., Muyembe J.J. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl Acad. Sci. USA. 2010; 107(37):16262–7. DOI: 10.1073/pnas.1005769107.

6. Rimoin A., Graham B. Whither monkeypox vaccination. Vaccine. 2011; 29Suppl4(Suppl4):D60-4. DOI: 10.1016/j.vaccine.2011.09.004.

7. McCollum A.M., Damon I.K. Human monkeypox. Clin. Infect. Dis. 2014; 58(2):260–7. DOI: 10.1093/cid/cit703.

8. Centers for Disease Control and Prevention. Multistate outbreak of monkeypox. Illinois, Indiana and Wisconsin: JAMA; 2003. Р. 30–31.

9. Wiacek K., Cwynar J., Bursa D., Horban A., Telega G., Mazur A. A case of cowpox virus infection in a 15-year-old boy and literature overview. Pediatria polska. 2017; 92:778–80. DOI: 10.1016/j.pepo.2017.07.004.

10. Vorou R.M., Papavassiliou V.G., Pierroutsakos I.N. Cowpox virus infection: an emerging health threat. Curr. Opin. Infect. Dis. 2008; 21(2):153–6. DOI: 10.1097/QCO.0b013e3282f44c74.

11. Trindade G.S., Lobato Z.I., Drumond B.P., Leite J.A., Trigueiro R.C., Guedes M.I., da Fonseca F.G., dos Santos J.R., Bonjardim C.A., Ferreira P.C., Kroon E.G. Short report: isolation of two vaccinia virus strains from a single bovine vaccinia outbreak in rural area from Brazil: implications on the emergence of zoonotic orthopoxviruses. Amer. J. Trop. Med. Hyg. 2006; 75(3):486–90.

12. Townsend M.B., MacNeil A., Reynolds M.G., Hughes C.M., Olson V.A., Damon I.K., Karem K.L. Evaluation of the Tetracore Orthopox BioThreat® antigen detection assay using laboratory grown orthopoxviruses and rash illness clinical specimens. J. Virol. Meth. 2013; 187(1):37–42. DOI: 10.1016/j.jviromet.2012.08.023.

13. Mabey D., Peeling R.W., Ustianowski A., Perkins M.D. Diagnostics for the developing world. Nat. Rev. Microbiol. 2004; 2:231–40. DOI: 10.1038/nrmicro841.

14. Petersen K., McMillan W. IVD systems in bioterrorism response. IVD Technol. 2002; 3:12–9.

15. Gavrilova E., Shcherbakov D., Maksyutov R., Shchelkunov S. Development of real-time PCR assay for specifc detection of cowpox virus. J. Clin. Virol. 2010; 49(1):37–40. DOI: 10.1016/j.jcv.2010.06.003.

16. Stern D., Olson V., Smith S., Pietraszczyk M., Miller L., Miethe P., Dorner B., Nitsche A. Rapid and sensitive point-of-care detection of orthopoxviruses by ABICAP immunofltration. Virol. J. 2016; 13(1):207. DOI: 10.1186/s12985-016-0665-5.

17. Stern D., Pauly D., Zydek M., Miller L., Piesker J., Laue M., Lisdat F., Dorner M.B., Dorner B.G., Nitsche A. Development of a genus-specifc antigen capture ELISA for orthopoxviruses – target selection and optimized screening. PLoS ONE. 2016; 11(3):e0150110. DOI: 10.1371/journal.pone.0150110.

18. Poltavchenko A.G., Ersh A.V., Taranov O.S., Yakubitskiy S.N., Filatov P.V. Rapid immunochemical method for the detection of orthopoxviruses (Orthopoxvirus, Chordopoxvirinae, Poxviridae). Voprosy Virusologii [Problems of Virology]. 2019; 64(6):291–7. DOI: 10.36233/0507-4088-2019-64-6-291-297.

19. Guide for the Care and Use of Laboratory Animals. Washington: National Academies Press; 1996. 154 р.

20. Poltavchenko A.G., Zaytzev B.N., Ersh A.V., Korneev D.V., Taranov O.S., Filatov P.V., Nechitaylo O.V. The selection and optimization of the detection system for self-contained multiplexed dot-immunoassay. J. Immunoassay Immunochem. 2016; 37(5):540–54. DOI: 10.1080/15321819.2016.1174134.

21. Poltavchenko A., Zaitsev B., Ersh A. Taranov O., Korneev D., Nikonov A. Selection of Substrate Material for Protein Arrays. Prot. Met. Phys. Chem. Surf. 2016; 52(2):301–7. DOI: 10.1134/S2070205116020234.

22. Sergeev A.A., Bulychev L.E., P’yankov O.V., Sergeev A.A., Bodnev S.A., Kabanov A.S., Tumanov Yu.V., Yurganova I.A., Shishkina L.N., Agafonov A.P., Sergeev A.N. Sensitivity of different animal species to monkeypox virus. Problemy Osobo Opasnykh Infektsii. [Problems of Particularly Dangerous Infections]. 2012; 111(1):88–91. DOI: 10.21055/0370-1069-2012-1(111)-88-91.

23. Czerny C.P., Meyer H., Mahnel H. Establishment of an ELISA for the detection of orthopox viruses based on neutralizing monoclonal and polyclonal antibodies. Zentralbl. Veterinarmed B. 1989; 36(7):537–46. DOI: 10.1111/j.1439-0450.1989.tb00641.x.

24. Gilchuk I., Gilchuk P., Sapparapu G., Lampley R., Singh V., Kose N., Blum D., Hughes L., Satheshkumar P., Townsend M., Kondas A., Reed Z., Weiner Z., Olson V., Hammarlund E., Raue H., Slifka M., Slaughter J., Graham B., Edwards K., Eisenberg R., Cohen G., Joyce S., Crowe J. Cross-Neutralizing and Protective Human Antibody Specifcities to Poxvirus Infections. Cell. 2016; 167(3):684–94. DOI:10.1016/j.cell.2016.09.049.


Review

For citations:


Poltavchenko A.G., Ersh A.V., Filatov P.V., Ushkalenko N.D., Yakubitsky S.N., Sergeev A.A., Shcherbakov D.N. Rapid Detection of Orthopoxviruses. Problems of Particularly Dangerous Infections. 2021;(3):106-113. (In Russ.) https://doi.org/10.21055/0370-1069-2021-3-106-113

Views: 830


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)