Preview

Problems of Particularly Dangerous Infections

Advanced search

Isolation of Rabies Virus Glycoprotein Using Three-Phase Extraction and Characteristics of its Antigenic Properties

https://doi.org/10.21055/0370-1069-2022-1-86-93

Abstract

The aim of the work was to develop an approach to isolation of rabies virus glycoprotein applying threephase extraction and to characterize its antigenic properties.

Materials and methods. Infectious activity of the rabies virus (production strain, “Ovine” GNKI) after long-term storage was restored on white BALB/c mice. The strain was used for cultivation on BHK-21 cells; the culture liquid was concentrated applying ultracentrifugation followed by separation by buoyant density in a sucrose gradient, selection of visually opalescent zones, phase concentration, chromatographic separation on an ENrich™ SEC650 column (Bio-Rad, USA) and selection of monomeric fractions with high serological activity according to the results of Western blotting.

Results and discussion. We have demonstrated that preliminary mechanical destruction of brain suspension, extraction of the virus-containing material from the cell suspension through successive low-speed and high-speed centrifugation, separation of the sediment produced in sucrose gradient with further phase concentration and chromatographic separation of the precipitate allows to obtain monomeric antigenic preparations with high serological activity. This methodology has made it possible to obtain an antigen, which is rabies virus glycoprotein with a molecular weight of 67 kDa, and two of its isoforms, having molecular weights of 60 and 54 kDa. The described approach can be viewed as an option for isolation of the rabies virus specific antigen when improving laboratory diagnostics techniques. The resulting antigen is a monomeric discrete containing one fraction with a molecu lar weight of 67 kDa. The data obtained corroborate the high specificity of the antigen and its suitability for the design of enzyme immunoassay and immunochromatographic tests, production of specific immunoglobulins, the study of the antigen/antibody interaction, as well as for the assessment of the protective immunity intensity after vaccination.

About the Authors

M. A. Efimova
Federal Center for Toxicological, Radiation and Biological Safety; Kazan State Academy of Veterinary Medicine named after N.E. Bauman
Russian Federation

Nauchny Gorodok-2, Kazan, 420075; 35, Siberian Tract St., Kazan, 420029



R. M. Akhmadeev
Federal Center for Toxicological, Radiation and Biological Safety
Russian Federation

Nauchny Gorodok-2, Kazan, 420075



A. G. Galeeva
Federal Center for Toxicological, Radiation and Biological Safety
Russian Federation

Nauchny Gorodok-2, Kazan, 420075



A. R. Valeeva
Kazan State Medical Academy – affiliated branch of the Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Russian Federation

11, Mushtari St., Kazan, 420012



N. R. Miftakhov
Federal Center for Toxicological, Radiation and Biological Safety
Russian Federation

Nauchny Gorodok-2, Kazan, 420075



M. N. Mukminov
Kazan State Medical Academy – affiliated branch of the Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia; Kazan (Volga Region) Federal University
Russian Federation

11, Mushtari St., Kazan, 420012; 18, Kremlin St., Kazan, 420008



K. S. Khaertynov
Federal Center for Toxicological, Radiation and Biological Safety; Kazan State Medical Academy – affiliated branch of the Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Russian Federation

Nauchny Gorodok-2, Kazan, 420075; 11, Mushtari St., Kazan, 420012



Е. A. Shuralev
Kazan State Academy of Veterinary Medicine named after N.E. Bauman; Kazan State Medical Academy – affiliated branch of the Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia; Kazan (Volga Region) Federal University
Russian Federation

35, Siberian Tract St. , Kazan, 420029; 11, Mushtari St., Kazan, 420012; 18, Kremlin St., Kazan, 420008



References

1. Fooks A.R., Shipley R., Markotter W., Tordo N., Freuling C.M., Müller T., McElhinney L.M., Banyard A.C., Rupprecht C.E. Renewed public health threat from emerging lyssaviruses. Viruses. 2021; 13(9):1769. DOI: 10.3390/v13091769.

2. Elmgren L.D., Nadin-Davis S.A., Muldoon F.T., Wandeler A.I. Diagnosis and analysis of a recent case of human rabies in Canada. Can. J. Infect. Dis. 2002; 13(2):129–33. DOI: 10.1155/2002/235073.

3. Saengseesom W., Mitmoonpitak C., Kasempimolporn S., Sitprija V. Real-time PCR analysis of dog cerebrospinal fluid and saliva samples for ante-mortem diagnosis of rabies. Southeast Asian J. Trop. Med. Public Health. 2007; 38(1):53–7.

4. Shulpin M.I., Nazarov N.A., Chupin S.A., Korennoy F.I., Metlin A.Ye., Mischenko A.V. Rabies surveillance in the Russian Federation. Rev. Sci. Tech. 2018; 37(2):483–95. DOI: 10.20506/rst.37.2.2817.

5. Hicks D.J., Fooks A.R., Johnson N. Developments in rabies vaccines. Clin. Exp. Immunol. 2012; 169(3):199–204. DOI: 10.1111/j.1365-2249.2012.04592.x.

6. Mani R.S., Madhusudana S.N. Laboratory diagnosis of hu- man rabies: recent advances. Sci. World J. 2013; 2013:569712. DOI: 10.1155/2013/569712.

7. Fontana D., Kratje R., Etcheverrigaray M., Prieto C. Rabies virus-like particles expressed in HEK293 cells. Vaccine. 2014; 32(24):2799–804. DOI: 10.1016/j.vaccine.2014.02.031.

8. Kang H., Qi Y., Wang H., Zheng X., Gao Y., Li N., Yang S., Xia X. Chimeric rabies virus-like particles containing membrane-an- chored GM-CSF enhances the immune response against rabies virus. Viruses. 2015; 7(3):1134–52. DOI: 10.3390/v7031134.

9. Gaudin Y., Ruigrok R.W., Tuffereau C., Knossow M., Flamand A. Rabies virus glycoprotein is a trimer. Virology. 1992; 187(2):627–32. DOI: 10.1016/0042-6822(92)90465-2.

10. Morimoto K., Foley H.D., McGettigan J.P., Schnell M.J., Dietzschold B. Reinvestigation of the role of the ra- bies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J. Neurovirol. 2000; 6(5):373–81. DOI: 10.3109/13550280009018301.

11. Li C., Zhang H., Ji L., Wang X., Wen Y., Li G., Fu Zh.F., Yang Y. Deficient incorporation of rabies virus glycoprotein into viri- ons enhances virus-induced immune evasion and viral pathogenicity. Viruses. 2019; 11(3):218. DOI: 10.3390/v11030218.

12. Schnee M., Vogel A.B., Voss D., Petsch B., Baumhof P., Kramps T., Stitz L. An mRNA vaccine encoding rabies virus glyco- protein induces protection against lethal infection in mice and corre- lates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 2016; 10(6):e0004746. DOI: 10.1371/journal.pntd.0004746.

13. Ramya R., Mohana Subramanian B., Sivakumar V., Senthilkumar R.L., Sambasiva Rao K.R.S., Srinivasan V.A. Expression and solubilization of insect cell-based rabies virus gly- coprotein and assessment of its immunogenicity and protective ef- ficacy in mice. Clin. Vaccine Immunol. 2011; 18(10):1673–9. DOI: 10.1128/CVI.05258-11.

14. Osakada F., Callaway E.M. Design and generation of re- combinant rabies virus vectors. Nat. Protoc. 2013; 8(8):1583–601. DOI: 10.1038/nprot.2013.094.

15. Sokol F., Stancek D., Koprowski H. Structural proteins of rabies virus. J. Virol. 1971; 7(2):241–9. DOI: 10.1128/JVI.7.2.241-249.1971.

16. Koser M.L., McGettigan J.P., Tan G.S., Smith M.E., Koprowski H., Dietzschold B., Schnell M.J. Rabies virus nucleo- protein as a carrier for foreign antigens. Proc. Natl Acad. Sci. USA. 2004; 101(25):9405–10. DOI: 10.1073/pnas.0403060101.

17. Masatani T., Ito N., Ito Yu., Nakagawa K., Abe M., Yamaoka S., Okadera K., Sugiyama M. Importance of rabies vi- rus nucleoprotein in viral evasion of interferon response in the brain. Microbiol Immunol. 2013; 57(7):511–7. DOI: 10.1111/1348-0421.12058.

18. Faber M., Pulmanausahakul R., Hodawadekar S.S., Spitsin S., McGettigan J.P., Schnell M.J., Dietzschold B. Overexpression of the Rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J. Virol. 2002; 76(7):3374–81. DOI: 10.1128/jvi.76.7.3374-3381.2002.

19. Gupta P.K., Sharma S., Walunj S.S., Chaturvedi V.K., Raut A.A., Patial S., Rai A., Pandey K D., Saini M. Immunogenic and antigenic properties of recombinant soluble glycoprotein of rabies virus. Vet. Microbiol. 2005; 1:108(3-4):207–14. DOI: 10.1016/j. vetmic.2005.04.007.

20. Cox J.H., Dietzschold B., Schneider L.G. Rabies virus glycoprotein. II. Biological and serological characterization. Infect. Immun. 1977; 16(3):754–9. DOI: 10.1128/IAI.16.3.754-759.1977.

21. Dastkhosh M., Rahimi P., Haghighat S., Biglari P., Howaizi N., Saghiri R., Roohandeh A. Cell culture extraction and purifica- tion of rabies virus nucleoprotein. Jundishapur J. Microbiol. 2014; 7(9):е11734. DOI: 10.5812/jjm.11734.

22. Smith G., Liu Y. Rabies glycoprotein virus-like particles (VLPs). 2012; WO/2012/061815.

23. Trabelsi K., Ben Zakour M., Kallel H. Purification of rabies virus produced in Vero cells grown in serum free medium. Vaccine. 2019; 37(47):7052–60. DOI: 10.1016/j.vaccine.2019.06.072.

24. Targovnik A.M., Ferrari A., Mc Callum G.J., Arregui M.B., Smith I., Bracco L.F., Alfonso V., Lopez M.G., Martinez-Solis M., Herrero S., Miranda M.V. Highly efficient production of rabies vi- rus glycoprotein G ectodomain in Sf9 insect cells. 3 Biotech. 2019; 9(11):385. DOI: 10.1007/s13205-019-1920-4.

25. Sokol F., Kuwert E., Wiktor T.J., Hummeler K., Koprowski H. Purification of rabies virus grown in tissue culture. J. Virol. 1968; 2(8):836–49. DOI: 10.1128/JVI.2.8.836-849.1968.

26. Laemmli U.K. Cleavage of structural proteins dur- ing the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680–5. DOI: 10.1038/227680a0.

27. Akhmadeev R.M., Efimova M.A., Chernov A.N., Mukhamedzhanova A.G., Arslanova A.F., Shuralev E.A., Khaertynov K.S., Nikitin A.I., Makaev Kh. N. [Method for obtaining rabies virus antigen for serological diagnostics]. Patent of the Russian Federation No. 2694836. 14.12.2018, publ. 17.07.2019. Bull. No. 20.

28. Asenjo J.A., Andrews B.A. Aqueous two-phase sys- tems for protein separation: phase separation and applica- tions. J. Chromatogr. A. 2012; 18;1238:1–10. DOI: 10.1016/j.chroma.2012.03.049.

29. Gaudin Y., Ruigrok R.W., Knossow M., Flamand A. Low‑pH conformational changes of rabies virus glycoprotein and their role in membrane fusion. J. Virol. 1993; 67(3):1365–72. DOI: 10.1128/JVI.67.3.1365-1372.1993.

30. Nadyrova A.I., Efimova M.A., Mukhamedzhanova A.G., Chernov A.N., Makaev H.N. Obtaining rabies virus purified an- tigen. As. J. Pharm. 2018; 12(4):1299–303. DOI: 10.22377/ajp.v12i04.2926.


Review

For citations:


Efimova M.A., Akhmadeev R.M., Galeeva A.G., Valeeva A.R., Miftakhov N.R., Mukminov M.N., Khaertynov K.S., Shuralev Е.A. Isolation of Rabies Virus Glycoprotein Using Three-Phase Extraction and Characteristics of its Antigenic Properties. Problems of Particularly Dangerous Infections. 2022;(1):86-93. (In Russ.) https://doi.org/10.21055/0370-1069-2022-1-86-93

Views: 623


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)