Preview

Problems of Particularly Dangerous Infections

Advanced search

Susceptibility to SARS-CoV-2 Virus Variants of Concern in Mouse Models

https://doi.org/10.21055/0370-1069-2022-1-148-155

Abstract

The aim of the research was to assess the susceptibility of mice of different lines to newly emerging variants of SARS-CoV-2.

Materials and methods. The SARS-CoV-2 virus strains belonging to variants of concern (VOC) circulating in the territory of the Russian Federation were used in the study. Experiments involved three inbred mouse lines (BALB/c, CBA and C57Bl/6z) and CD1 outbred mice taken from the nursery of the SSC VB “Vector” of the Rospotrebnadzor. The infectious titer of coronavirus in tissue samples obtained from the laboratory animals was determined on a Vero E6 cell culture. The (Ct) threshold value in RT-PCR was considered an additional parameter for monitoring the viral load in the samples. The severity of lung tissue damage was assessed using histological preparations.

Results and discussion. The susceptibility of various mouse lines to the genetic variant Beta of the SARS-CoV-2 virus has been investigated. During intranasal infection of the inbred and outbred mice with strains of VOC at a dose of 2·103 TCID50, the virus replicated in the lungs with maximum concentrations 72 hours after infection. The pathogenicity of genetic variants of the SARS-CoV-2 virus for BALB/c mice has been assessed, a 50 % infectious dose for intranasal infection (ID50) determined. Histological analysis showed COVID-19-specific lung tissue lesions in infected animals. Our study proves that BALB/c mice can be used as a model animal in screening studies when evaluating the effectiveness of therapeutic, vaccine preparations and studying the pathogenesis caused by VOC of the SARS-CoV-2 virus: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Omicron (B.1.1.529) and the like.

About the Authors

A. V. Shipovalov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Andrey V. Shipovalov

Kol’tsovo, Novosibirsk Region, 630559



G. А. Kudrov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



A. A. Tomilov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



S. A. Bodnev
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



N. D. Boldyrev
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



A. S. Ovchinnikova
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



A. V. Zaikovskaya
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



O. S. Taranov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



O. V. P’yankov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



R. A. Maksyutov
State Scientific Center of Virology and Biotechnology “Vector”
Russian Federation

Kol’tsovo, Novosibirsk Region, 630559



References

1. Wu D., Wu T., Liu Q., Yang Z. The SARS-CoV-2 outbreak: what we know. Int. J. Infect. Dis. 2020; 94:44–8. DOI: 10.1016/j.ijid.2020.03.004.

2. World Health Organization (WHO). (Cited 06 Mar 2022). [Internet]. Available from: https://www.who.int/ru.

3. Fact sheet – SARS-CoV-2, variant of concern (VOC). (Cited 06 Mar 2022). [Internet]. Available from: https://www.euro.who.int/ru/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/2021/factsheet-sars-cov-2-variant-ofconcern-voc,-february-2021-produced-by-whoeurope.

4. Zhou D., Dejnirattisai W., Supasa P., Liu C., Mentzer A.J., Ginn H.M., Zhao Y., Duyvesteyn H.M.E., Tuekprakhon A., Nutalai R., Wang B., Paesen G.C., Lopez-Camacho C., Slon-Campos J., Hallis B., Coombes N., Bewley K., Charlton S., Walter T.S., Skelly D., Lumley S.F., Dold C., Levin R., Dong T., Pollard A.J., Knight J.C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S., James W., Carroll M.W., Klenerman P., Barnes E., Dunachie S.J., Fry E.E., Mongkolsapaya J., Ren J., Stuart D.I., Screaton G.R. Evidence of escape of SARSCoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. 2021; 184(9):2348–61. DOI: 10.1016/j.cell.2021.02.037.

5. Investigation of SARS-CoV-2 variants of concern: technical briefings. (Cited 06 Mar 2022). [Internet]. Available from: https://www.gov.uk/government/publications/investigation-of-novel-sarscov-2-variant-variant-of-concern-20201201.

6. Supasa P., Zhou D, Dejnirattisai W., Liu C., Mentzer A.J., Ginn H.M., Zhao Y., Duyvesteyn H.M.E., Nutalai R., Tuekprakhon A., Wang B., Paesen G.C., Slon-Campos J., López-Camacho C., Hallis B., Coombes N., Bewley K.R., Charlton S., Walter T.S., Barnes E., Dunachie S.J., Skelly D., Lumley S.F., Baker N., Shaik I., Humphries H.E., Godwin K., Gent N., Sienkiewicz A., Dold C., Levin R., Dong T., Pollard A.J., Knight J.C., Klenerman P., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., BelijRammerstorfer S., Gilbert S., Hall D.R., Williams M.A., Paterson N.G., James W., Carroll M.W., Fry E.E., Mongkolsapaya J., Ren J., Stuart D.I., Screaton G.R. Reduced neutralization of SARSCoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell. 2021; 184(8):2201–11.e7. DOI: 10.1016/j.cell.2021.02.033

7. Li Q., Nie J., Wu J., Zhang L., Ding R., Wang H., Zhang Y., Li T., Liu S., Zhang M., Zhao C., Liu H., Nie L., Qin H., Wang M., Lu Q., Li X., Liu J., Liang H., Shi Y., Shen Y., Xie L., Zhang L., Qu X., Xu W., Huang W., Wang Y. SARS-CoV-2 501Y.V2 vari ants lack higher infectivity but do have immune escape. Cell. 2021; 184(9):2362–71.e9. DOI: 10.1016/j.cell.2021.02.042.

8. Boudewijns R., Thibaut H.J., Kaptein S.J.F., Li R., Vergote V., Seldeslachts L., De Keyzer C., Bervoets L., Sharma S., Van Weyenbergh J., Liesenborghs L., Ma J., Jansen S., Van Looveren D., Vercruysse T., Jochmans D., Wang X., Martens E., Roose K., De Vlieger D., Schepens B., Van Buyten T., Jacobs S., Liu Y., Martí-Carreras J., Vanmechelen B., Wawina-Bokalanga T., Delang L., Rocha-Pereira J., Coelmont L., Chiu W., Leyssen P., Heylen E., Schols D., Wang L., Close L., Matthijnssens J., Van Ranst M., Compernolle V., Schramm G., Van Laere K., Saelens X., Callewaert N., Opdenakker G., Maes P., Weynand B., Cawthorne C., Velde G.V., Wang Z., Neyts J., Dallmeier K. STAT2 signaling as doubleedged sword restricting viral dissemination but driving severe pneumonia in SARS-CoV-2 infected hamsters. bioRxiv. 2020. DOI: 10.1101/2020.04.23.056838.

9. Gu H., Chen Q., Yang G., He L., Fan H., Deng Y.Q., Wang Y., Teng Y., Zhao Z., Cui Y., Li Y., Li X.F., Li J., Zhang N.N., Yang X., Chen S., Guo Y., Zhao G., Wang X., Luo D.Y., Wang H., Yang X., Li Y., Han G., He Y., Zhou X., Geng S., Sheng X., Jiang S., Sun S., Qin C.F., Zhou Y. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. 2020; 369(6511):1603–7. DOI: 10.1126/science.abc4730.

10. Rathnasinghe R., Jangra S., Cupic A., Martínez-Romero C., Mulder L.C.F., Kehrer T., Yildiz S., Choi A., Mena I., De Vrieze J., Aslam S., Stadlbauer D., Meekins D.A., McDowell C.D., Balaraman V., Richt J.A., De Geest B.G., Miorin L., Krammer F., Simon V., García-Sastre A., Schotsaert M. The N501Y mutation in SARSCoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. medRxiv. 2021; 2021.01.19.21249592. DOI: 10.1101/2021.01.19.21249592.

11. Diamond M., Halfmann P., Maemura T., Iwatsuki-Horimoto K., Iida S., Kiso M., Scheaffer S., Darling T., Joshi A., Loeber S., Foster S., Ying B., Whitener B., Floyd K., Ujie M., Nakajima N., Ito M., Wright R., Uraki R., Li R., Sakai Y., Liu Y., Larson D., Osorio J., Hernandez-Ortiz J., Ciuoderis K., Florek K., Patel M., Bateman A., Odle A., Wong L.Y., Wang Z., Edara V.V., Chong Z., Thackray L., Ueki H., Yamayoshi S., Imai M., Perlman S., Webby R., Seder R., Suthar M., Garcia-Sastre A., Schotsaert M., Suzuki T., Boon A., Kawaoka Y., Douek D., Moliva J., Sullivan N., Gagne M., Ransier A., Case J., Jeevan T., Franks J., Fabrizio T., DeBeauchamp J., Kercher L., Seiler P., Singh G., Warang P., Gonzalez-Reiche A.S., Sordillo E., van Bakel H., Simon V. The SARS-CoV-2 B.1.1.529 Omicron virus causes attenuated infection and disease in mice and hamsters. Res Sq. 2021; rs.3.rs-1211792. DOI: 10.21203/rs.3.rs-1211792/v1.

12. Wei C., Shan K. J., Wang W., Zhang S., Huan Q., Qian W. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J. Genet. Genomics. 2021; 48(12):1111–21. DOI: 10.1016/j.jgg.2021.12.003.

13. Li Q., Nie J., Wu J., Zhang L., Ding R., Wang H., Zhang Y., Li T., Liu S., Zhang M., Zhao C., Liu H., Nie L., Qin H., Wang M., Lu Q., Li X., Liu J., Liang H., Shi Y., Shen Y., Xie L., Zhang L., Qu X., Xu W., Huang W., Wang Y. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. 2021; 184(9):2362–71.e9. DOI: 10.1016/j.cell.2021.02.042.

14. Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938; 27(3):493–7. DOI: 10.1093/oxfordjournals.aje.a118408.

15. Zayrat’yants O.V., editor. [Pathological Anatomy of COVID-19. Atlas]. Moscow; 2020. 140 p.


Review

For citations:


Shipovalov A.V., Kudrov G.А., Tomilov A.A., Bodnev S.A., Boldyrev N.D., Ovchinnikova A.S., Zaikovskaya A.V., Taranov O.S., P’yankov O.V., Maksyutov R.A. Susceptibility to SARS-CoV-2 Virus Variants of Concern in Mouse Models. Problems of Particularly Dangerous Infections. 2022;(1):148-155. (In Russ.) https://doi.org/10.21055/0370-1069-2022-1-148-155

Views: 700


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)