Preview

Problems of Particularly Dangerous Infections

Advanced search

In silico Research at the Stages of Designing Modern Means for Prevention of Plague (by the Example of Subunit Vaccines)

https://doi.org/10.21055/0370-1069-2022-3-6-13

Abstract

The purpose of this review was to analyze the findings of domestic and foreign researchers on the development of modern drugs for the specific prevention of plague and to illustrate the possibilities of using bioinformatics analysis at the design stages to create an effective and safe vaccine. Work on the creation of an effective new-generation plague vaccine is hampered by several factors associated primarily with the presence of mechanisms of evasion from the immune system of the macroorganism, as well as a large number of pathogenicity determinants in the plague agent. Due to the development of approaches that are based on in silico studies, there is a progressive development of vaccine technologies oriented primarily to the use of the most important immunogens of the plague microbe (F1 and V antigen). Studies aimed at improving the antigenic properties of F1 and LcrV, as well as work on bioinformatic search and analysis of additional promising components to be included in the composition of subunit vaccines are considered as topical applications of bioinformatics data analysis in developing the tools for enhancing the effectiveness of protection through vaccination with subunit preparations.

About the Authors

A. A. Budanova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

Angelina A. Budanova

46, Universitetskaya St., Saratov, 410005



T. N. Shchukovskaya
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



References

1. Knirel’ Yu.A., Fedorova V.A., Anisimov A.P. [Struggling for control over the plague. The past and present of the Black Death]. Vestnik Rossiiskoi Akademii Nauk [Herald of the Russian Academy of Sciences]. 2011; 81(1):33–42.

2. Dentovskaya S.V., Kopylov P.Kh., Ivanov S.A., Ageev S.A., Anisimov A.P. [Molecular bases of vaccine-prevention of plague]. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 2013; (3):3–12.

3. Cui Y., Yang X., Xiao X., Anisimov A.P., Li D., Yan Y., Zhou D., Rajerison M., Carniel E., Achtman M., Yang R., Song Y. Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries. Infect. Genet. Evol. 2014; 26:172–9. DOI: 10.1016/j.meegid.2014.05.023.

4. WHO – Plague vaccines workshop April 23 2018 (Cited 20 March 2021) [Internet]. Available from: https://www.who.int/blueprint/what/norms-standards/Plague_vaccines_workshop-23-april2018/en/.

5. Sun W., Singh A.K. Plague vaccine: recent progress and prospects. Vaccines. 2019; 4:11. DOI: 10.1038/s41541-019-0105-9.

6. Semakova A.P., Kudryavtseva O.M., Popova P.Yu., Komissarov A.V., Mikshis N.I. [Stabilization by freeze-drying of Bacillus anthracis immunogenic antigens as a component of anthrax recombinant vaccine prototype]. Biotekhnologiya [Biotechnology]. 2017; 33(3):57–65. DOI: 10.21519/0234-2758-2017-33-3-57-65.

7. Krasil’nikova E.A., Trunyakova A.S., Vagaiskaya A.S., Svetoch T.E., Shaikhutdinova R.Z., Dentovskaya S.V. [A search for new molecular targets for optimizing plague preventive vaccination and therapy]. Infektsiya i Immunitet [Russian Journal of Infection and Immunity]. 2021; 11(2):265–82. DOI: 10.15789/2220-7619SNM-1254.

8. Mikshis N.I., Kutyrev V.V. [Current state of the problem of vaccine development for specific prophylaxis of plague]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2019; (1):50–63. DOI: 10.21055/0370-1069-2019-1.50-63.

9. Flower D.R., Davies M.N., Doytchinova I.A. Identification of candidate vaccine antigens in silico. In: Flower D.R., Perrie Y., editors. Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines. New York: Springer; 2013. P. 39–71. DOI: 10.1007/978-1-4614-5070-2_3.

10. Toseland C.P., Clayton D.J., McSparron H., Hemsley S.L., Blythe M.J., Paine K., Doytchinova I.A., Guan P., Hattotuwagama C.K., Flower D.R. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 2005; 1(1):4. DOI: 10.1186/1745-7580-1-4.

11. McSparron H., Blythe M.J., Zygouri C., Doytchinova I.A., Flower D.R. JenPep: a novel computational information resource for immunobiology and vaccinology. J. Chem. Inf. Comput. Sci. 2003; 43(4):1276–87. DOI: 10.1021/ci030461e.

12. Blythe M.J., Doytchinova I.A., Flower D.R. JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics. 2002; 18(3):434–9. DOI: 10.1093/bioinformatics/18.3.434.

13. Vita R., Zarebski L., Greenbaum J.A., Emami H., Hoof I., Salimi N., Damle R., Sette A., Peters B. The immune epitope database 2.0. Nucleic Acids Res. 2010; 38:D854-62. DOI: 10.1093/nar/gkp1004.

14. Ansari H.R., Flower D.R., Raghava G.P.S. AntigenDB: an immunoinformatics database of pathogen antigens. Nucleic Acids Res. 2010; 38:D847-53. DOI: 10.1093/nar/gkp830.

15. Xiang Z., Todd T., Ku K.P., Kovacic B.L., Larson C.B., Chen F., Hodges A.P., Tian Y., Olenzek E.A., Zhao B., Colby L.A., Rush H.G., Gilsdorf J.R., Jourdian G.W., He Y. VIOLIN: vaccine investigation and online information network. Nucleic Acids Res. 2008; 36:D923-8. DOI: 10.1093/nar/gkm1039.

16. Petsko G.A., Ringe D. Protein Structure and Function. New Science Press; 2004. 195 p.

17. Doytchinova I.A., Flower D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007; 8:4. DOI: 10.1186/1471-2105-8-4.

18. Wold S., Jonsson J., Sjöström M., Sandberg M., Rännar S. DNA and peptide sequences and chemical processes multivariately modeled by principal component analysis and partial least-squares projections to latent structures. Anal. Chim. Acta. 1993; 277(2):239– 53. DOI: 10.1016/0003-2670(93)80437-P.

19. Sutyagin V.V., Kovaleva G.G. [Proteins of the plague microbe vaccine strain (Yersinia pestis EV NIIEG) with potential allergen properties]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2019; (4):97–101. DOI: 10.21055/0370-1069-2019-4-97-101.

20. Bragin A.O., Sokolov V.S., Demenkov P.S., Ivanisenko T.V., Bragina E.Yu., Matushkin Yu.G., Ivanisenko V.A. [Prediction of bacterial and archaeal allergenicity with AllPred program]. Molekulyarnaya Biologiya [Molecular Biology]. 2018; 52(2):326– 32. DOI: 10.7868/S0026898418020179.

21. De Groot A.S., Sbai H., Aubin C.S., McMurry J., Martin W. Immuno-informatics: Mining genomes for vaccine components. Immunol. Cell Biol. 2002; 80(3):255–69. DOI: 10.1046/j.1440-1711.2002.01092.x.

22. Pizza M., Scarlato V., Masignani V., Giuliani M.M., Aricò B., Comanducci M., Jennings G.T., Baldi L., Bartolini E., Capecchi B., Galeotti C.L., Luzzi E., Manetti R., Marchetti E., Mora M., Nuti S., Ratti G., Santini L., Savino S., Scarselli M., Storni E., Zuo P., Broeker M., Hundt E., Knapp B., Blair E., Mason T., Tettelin H., Hood D.W., Jeffries A.C., Saunders N.J., Granoff D.M., Venter J.C., Moxon E.R., Grandi G., Rappuoli R. Identification of vaccine candidates against serogroup B meningococcus by wholegenome sequencing. Science. 2000; 287:1816–20. DOI: 10.1126/science.287.5459.1816.

23. Ribas-Aparicio R.M., Castelán-Vega J.A., Jiménez-Alberto A., Monterrubio-López G.P., Aparicio-Ozores G. The impact of bioinformatics on vaccine design and development. In: Afrin F., Hemeg H., Ozbak H., editors. Vaccines. InTechOpen; 2017. P. 123–45. DOI: 10.5772/intechopen.69273.

24. Cornick J.E., Bishop Ö.T., Yalcin F., Kiran A.M., Kumwenda B., Chaguza C., Govindpershad S., Ousmane S., Senghore M., Plessis M., Pluschke G., Ebruke C., McGee L., Sigaùque B., Collard J.-M., Bentley S.D., Kadioglu A., Antonio M., von Gottberg A., French N., Klugman K.P., Heyderman R.S., Alderson M., Everett D.B. The global distribution and diversity of protein vaccine candidate antigens in the highly virulent Streptococcus pnuemoniae serotype 1. Vaccine. 2017; 35(6):972– 80. DOI: 10.1016/j.vaccine.2016.12.037.

25. Bosio C.F., Jarrett C.O., Gardner D., Hinnebusch B.J. Kinetics of innate immune response to Yersinia pestis after intradermal infection in a mouse model. Infect. Immun. 2012; 80(11):4034– 45. DOI: 10.1128/IAI.00606-12.

26. Podladchikova O.N. [Modern views on molecular mechanisms of plague pathogenesis]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2017; (3):33–40. DOI: 10.21055/0370-1069-2017-3-33-40.

27. Kopylov P.Kh., Anisimov A.P. [Modern requirements for plague vaccines]. Bakteriologiya [Bacteriology]. 2019; 4(4):42–6. DOI: 10.20953/25001027-2019-4-46-46.

28. Feodorova V.A., Lyapina A.M., Khizhnyakova M.A., Zaitsev S.S., Saltykov Y.V., Motin V.L. Yersinia pestis antigen F1 but not LcrV induced humoral and cellular immune responses in humans immunized with live plague vaccine-comparison of immunoinformatic and immunological approaches. Vaccines. 2020; 8(4):698. DOI: 10.3390/vaccines8040698.

29. Williamson E.D., Flick-Smith H.C., Waters E., Miller J., Hodgson I., Le Butt C.S., Hill J. Immunogenicity of the rF1+rV vaccine for plague with identification of potential immune correlates. Microb. Pathog. 2007; 42(1):11–21. DOI: 10.1016/j.micpath.2006.09.003.

30. Demeure C., Dussurget O., Mas Fiol G., Le Guern A.-S., Savin C., Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect. 2019; 21(5-6):202–12. DOI: 10.1016/j.micinf.2019.06.007.

31. Cornelius C., Quenee L., Anderson D., Schneewind O. Protective immunity against plague. Adv. Exp. Med. Biol. 2007; 603:415–24. DOI: 10.1007/978-0-387-72124-8_38.

32. Brubaker R.R. Interleukin-10 and the inhibition of innate immunity to Yersinia: roles of Yops and LcrV (V antigen). Infect. Immun. 2003; 71(7):3673–81. DOI: 10.1128/IAI.71.7.36733681.2003.

33. Quenee L.E., Schneewind O. Plague vaccines and the molecular basis of immunity against Yersinia pestis. Hum. Vaccin. 2009; 5(12):817–23. DOI: 10.4161/hv.9866.

34. Overheim K.A., Depaolo R.W., Debord K.L., Morrin E.M., Anderson D.M., Green N.M., Brubaker R.R., Jabri B., Schneewind O. LcrV plague vaccine with altered immunomodulatory properties. Infect. Immun. 2005; 73(8):5152–9. DOI: 10.1128/IAI.73.8.51525159.2005.

35. DeBord K.L., Anderson D.M., Marketon M.M., Overheim K.A., DePaolo R.W., Ciletti N.A., Jabri B., Schneewind O. Immunogenicity and protective immunity against bubonic plague and pneumonic plague by immunization of mice with the recombinant V10 antigen, a variant of LcrV. Infect. Immun. 2006; 74(8):4910–4. DOI: 10.1128/IAI.01860-05.

36. Daniel C., Dewitte A., Poiret S., Marceau M., Simonet M., Marceau L., Descombes G., Boutillier D., Bennaceur N., BontempsGallo S., Lemaître N., Sebbane F. Polymorphism in the Yersinia LcrV antigen enables immune escape from the protection conferred by an LcrV-secreting Lactococcus lactis in a Pseudotuberculosis mouse model. Front. Immunol. 2019; 10:1830. DOI: 10.3389/fimmu.2019.01830.

37. Demeure C.E., Dussurget O., Fiol G.M., Le Guern A.S., Savin C., Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun. 2019; 20(5):357–70. DOI: 10.1038/s41435-019-0065-0.

38. Li B., Zhou L., Guo J., Wang X., Ni B., Ke Y., Zhu Z., Guo Z., Yang R. High-throughput identification of new protective antigens from a Yersinia pestis live vaccine by enzyme-linked immunospot assay. Infect. Immun. 2009; 77(10): 4356–61. DOI: 10.1128/IAI.00242-09.

39. Erova T.E., Rosenzweig J.A., Sha J., Suarez G., Sierra J.C., Kirtley M.L., van Lier C.J., Telepnev M.V., Motin V.L., Chopra A.K. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine. Clin. Vaccine Immunol. 2013; 20(2):227–38. DOI: 10.1128/CVI.00597-12.

40. Lin J.S., Szaba F.M., Kummer L.W., Chromy B.A., Smiley S.T. Yersinia pestis YopE contains a dominant CD8 T cell epitope that confers protection in a mouse model of pneumonic plague. J. Immunol. 2011; 187(2):897–904. DOI: 10.4049/jimmunol.1100174.

41. Zhang Y., Mena P., Romanov G., Bliska J.B. Effector CD8+ T cells are generated in response to an immunodominant epitope in type III effector YopE during primary Yersinia pseudotuberculo¬ sis infection. Infect. Immun. 2014; 82(7):3033–44. DOI: 10.1128/IAI.01687-14.

42. Szaba F.M., Kummer L.W., Wilhelm L.B., Lin J.S., Parent M.A., Montminy-Paquette S.W., Lien E., Johnson L.L., Smiley S.T. D27-pLpxL, an avirulent strain of Yersinia pestis, primes T cells that protect against pneumonic plague. Infect. Immun. 2009; 77(10):4295– 304. DOI: 10.1128/IAI.00273-09.

43. Szaba F.M., Kummer L.W., Duso D.K., Koroleva E.P., Tumanov A.V., Cooper A.M., Bliska J.B., Smiley S.T., Lin J.S. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection. PLoS Pathog. 2014; 10(5):e1004142. DOI: 10.1371/journal.ppat.1004142.

44. Zvi A., Rotem S., Zauberman A., Elia U., Aftalion M., Bar-Haim E., Mamroud E., Cohen O. Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague. Vaccine. 2017; 35(44):5995–6006. DOI: 10.1016/j.vaccine.2017.05.092.

45. Chowell D., Krishna S., Becker P.D., Cocita C., Shu J., Tan X., Greenberge P.D., Klavinskis L.S., Blattman J.N., Anderson K.S. TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. Proc. Natl Acad. Sci. USA. 2015; 112(14):E1754–62. DOI: 10.1073/pnas.1500973112.


Review

For citations:


Budanova A.A., Shchukovskaya T.N. In silico Research at the Stages of Designing Modern Means for Prevention of Plague (by the Example of Subunit Vaccines). Problems of Particularly Dangerous Infections. 2022;(3):6-13. (In Russ.) https://doi.org/10.21055/0370-1069-2022-3-6-13

Views: 678


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)