Preview

Problems of Particularly Dangerous Infections

Advanced search

Dynamics of Antibody Response to Yersinia pestis Proteins in Plague Affected Guinea Pigs

https://doi.org/10.21055/0370-1069-2022-4-50-56

Abstract

Designing of new means for the specific prevention of plague, especially protein subunit vaccines, is impossible without studying the role of individual antigens in the manifestation of the pathogenic and immunogenic properties of Yersinia pestis. The aim of the present study was to determine the antibody levels to Y. pestis antigens in guinea pigs that survived infection with sub-lethal doses of virulent plague agent strains using enzyme immunoassay (ELISA). Materials and methods. Guinea pigs were inoculated subcutaneously with 30 CFU of the wild type Y. pestis subsp. Pestis strain 231 or non-capsular Y. pestis subsp. pestis Caf1-negative strain 358/12. Blood samples from sick or recovered guinea pigs were collected on day 15, 30, 60, and 90 after infection. The antibody response was assessed by 18 recombinant Y. pestis proteins in ELISA. Results and discussion. Heterogeneity of the antibody responses to the majority of the antigens with variation of IgG titers from animal to animal has been revealed. We observed increase in antibody titers by day 90 for the most analyzed antigens in the sera of the guinea pigs injected with wild type Y. pestis 231. On the contrary we found reduction in antibody titers by day 90 in case of inoculation with Y. pestis 358/12. The preservation of antibodies to Y. pestis proteins of different localization in the organism of the guinea pigs, as well functional activity, and the degree of representation on the surface of bacterial cell for a prolonged period of time indicates the multiplex nature of the plague immunity formation. Our findings are significant for the future design and development of effective vaccines against plague and the search for new targets for diagnostics of this disease.

About the Authors

T. V. Gapel’chenkova
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Tat’yana V. Gapel’chenkova

Obolensk, Moscow Region, 142279, Russian Federation



R. Z. Shaikhutdinova
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



A. S. Trunyakova
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



T. E. Svetoch
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



T. I. Kombarova
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



M. E. Platonov
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



A. I. Borzilov
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



P. Kh. Kopylov
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



S. V. Dentovskaya
State Scientific Center of Applied Microbiology and Biotechnology
Russian Federation

Obolensk, Moscow Region, 142279, Russian Federation



References

1. Popov N.V., Eroshenko G.A., Karnaukhov I.G., Kuznetsov A.A., Matrosov A.N., Ivanova A.V., Porshakov A.M., Lyapin M.N., Korzun V.M., Verzhutsky D.B., Ayazbaev T.Z., Lopatin A.A., Ashibokov U.M., Balakhonov S.V., Kulichenko A.N., Kutyrev V.V. [Epidemiological and epizootic situation on plague in the Russian Federation and forecast for its development for 2020–2025]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (1):43–50. DOI: 10.21055/0370-1069-2020-1-43-5.

2. Dillard R.L., Juergens A.L. Plague. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.

3. Du Y., Rosqvist R., Forsberg A. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect. Immun. 2002; 70(3):1453–60. DOI: 10.1128/IAI.70.3.1453-1460.2002.

4. Mueller C.A., Broz P., Müller S.A., Ringler P., Erne-Brand F., Sorg I., Kuhn M., Engel A., Cornelis G.R. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science. 2005; 310(5748):674–6. DOI: 10.1126/science.1118476.

5. Anderson G.W. Jr., Leary S.E., Williamson E.D., Titball R.W., Welkos S.L., Worsham P.L., Friedlander A.M. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect. Immun. 1996; 64(11):4580–5. DOI: 10.1128/iai.64.11.4580-4585.1996.

6. Titball R.W., Williamson E.D. Vaccination against bubonic and pneumonic plague. Vaccine. 2001; 19(20):4175–84. DOI: 10.1016/s0264-410x(01)00163-3.

7. Williamson E.D. Plague vaccine research and development. J. Appl. Microbiol. 2001; 91(4):606–8. DOI: 10.1046/j.1365-2672.2001.01497.x.

8. Dentovskaya S.V., Shaikhutdinova R.Z., Anisimov A.P. A recombinant prototrophic Yersinia pestis strain over-produces F1 antigen with enhanced serological activity. Adv. Exp. Med. Biol. 2003; 529:419–21. DOI: 10.1007/0-306-48416-1_83.

9. Anisimov A.P., Bakhteeva I.V., Panfertsev E.A., Svetoch T.E., Kravchenko T.B., Platonov M.E., Titareva G.M., Kombarova T.I., Ivanov S.A., Rakin A.V., Amoako K.K., Dentovskaya S.V. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice. J. Med. Microbiol. 2009; 58(Pt. 1):26–36. DOI: 10.1099/jmm.0.005678-0.

10. Kopylov P.Kh., Bakhteeva I.V., Anisimov A.P., Dentovskaya S.V., Ivanov S.A., Kiseleva N.V., Levchuk V.P., Panfertsev E.A., Platonov M.E., Svetoch T.E., Titareva G.M. [A nucleotide sequence encoding an immunogenic lcrV(G113) polypeptide that elicits a protective immune response against Yersinia pestis; recombinant plasmid DNA pETV-I-3455 encoding the immunogenic LcrV(G113) polypeptide; recombinant Escherichia coli strain BL21(DE3)/pETV-I-3455, producer of the immunogenic polypeptide LcrV(G113); polypeptide LcrV(G113) and method for its production]. Patent for the invention in the Russian Federation No. 2439155, publ. 01/10/2012. Bull. No. 1.

11. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual. N.Y.: Cold Spring Harbor, Cold Spring Harbor Laboratory; 1982. 545 p.

12. Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680–5. DOI: 10.1038/227680a0.

13. Osterman L.A. [Methods for the Study of Proteins and Nucleic Acids. Electrophoresis and Ultracentrifugation]. Moscow: “Nauka”; 1981. 288 p.

14. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA. 1979; 76(9):4350–4. DOI: 10.1073/pnas.76.9.4350.

15. Williamson E.D., Vesey P.M., Gillhespy K.J., Eley S.M., Green M., Titball R.W. An IgG1 titre to the F1 and V antigens correlates with protection against plague in the mouse model. Clin. Exp. Immunol. 1999; 116(1):107–14. DOI: 10.1046/j.1365-2249.1999.00859.x.

16. Jones S.M., Griffin K.F., Hodgson I., Williamson E.D. Protective efficacy of a fully recombinant plague vaccine in the guinea pig. Vaccine. 2003; 21(25-26):3912–8. DOI: 10.1016/s0264-410x(03)00379-7.

17. Quenee L.E., Ciletti N., Berube B., Krausz T., Elli D., Hermanas T., Schneewind O. Plague in Guinea pigs and its prevention by subunit vaccines. Am. J. Pathol. 2011; 178(4):1689–700. DOI: 10.1016/j.ajpath.2010.12.028.

18. Benner G.E., Andrews G.P., Byrne W.R., Strachan S.D., Sample A.K., Heath D.G., Friedlander A.M. Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice. Infect. Immun. 1999; 67(4):1922–8. DOI: 10.1128/IAI.67.4.1922-1928.1999.

19. Andrianaivoarimanana V., Telfer S., Rajerison M., Ranjalahy M.A., Andriamiarimanana F., Rahaingosoamamitiana C., Rahalison L., Jambou R. Immune responses to plague infection in wild Rattus rattus, in Madagascar: a role in foci persistence. PLoS One. 2012; 7(6):e38630. DOI: 10.1371/journal.pone.0038630.

20. Erova T.E., Rosenzweig J.A., Sha J., Suarez G., Sierra J.C., Kirtley M.L., van Lier C.J., Telepnev M.V., Motin V.L., Chopra A.K. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine. Clin. Vaccine Immunol. 2013; 20(2):227–38. DOI: 10.1128/CVI.00597-12.

21. Li B., Jiang L., Song Q., Yang J., Chen Z., Guo Z., Zhou D., Du Z., Song Y., Wang J., Wang H., Yu S., Wang J., Yang R. Protein microarray for profiling antibody responses to Yersinia pestis live vaccine. Infect. Immun. 2005; 73(6):3734–9. DOI: 10.1128/IAI.73.6.3734-3739.2005.

22. Li B., Du C., Zhou L., Bi Y., Wang X., Wen L., Guo Z., Song Z., Yang R. Humoral and cellular immune responses to Yersinia pestis infection in long-term recovered plague patients. Clin. Vaccine Immunol. 2012; 19(2):228–34. DOI: 10.1128/CVI.05559-11.


Review

For citations:


Gapel’chenkova T.V., Shaikhutdinova R.Z., Trunyakova A.S., Svetoch T.E., Kombarova T.I., Platonov M.E., Borzilov A.I., Kopylov P.Kh., Dentovskaya S.V. Dynamics of Antibody Response to Yersinia pestis Proteins in Plague Affected Guinea Pigs. Problems of Particularly Dangerous Infections. 2022;(4):50-56. (In Russ.) https://doi.org/10.21055/0370-1069-2022-4-50-56

Views: 389


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)