INDEL-Typing of Yersinia pseudotuberculosis Strains
https://doi.org/10.21055/0370-1069-2022-4-102-109
Abstract
The aim of this study was to develop a new method of intraspecific genetic differentiation of Yersinia pseudotuberculosis, based on the detection of INDEL-markers using PCR. Materials and methods. Analyzed were 308 strains from the NCBI database and 15 strains sequenced within the frames of this study. The nucleotide sequences of the strains were determined using the MiSeq technology platform. The genomes of the strains sequenced in the work, as well as genomes from the NCBI database, were assessed using in silico PCR with 7 pairs of primers designed in the study. As a result of a comparison of genome-wide sequences of 22 Y. pseudotuberculosis strains from the NCBI database, using the author’s software (GenExpert), 7 INDEL-markers were selected that make it possible to effectively distinguish between strains of the causative agent of pseudotuberculosis. Based on these markers, 7 pairs of primers were designed and synthesized for the analysis of different strains using PCR. Analysis of 323 strains in PCR in silico and 70 strains in PCR in vitro allowed for dividing them into 30 genetic groups. Comparison of the results of PCR in silico and in vitro confirmed the possibility of using the proposed primers for intraspecific differentiation of Y. pseudotuberculosis. Based on the data obtained, a dendrogram reflecting the phylogenetic relations of different strains of Y. pseudotuberculosis was constructed. When analyzing the distribution of Y. pseudotuberculosis strains by various clusters and genetic groups, a number of patterns were revealed. Conducted in silico and in vitro PCR show that the proposed method of INDEL-typing can be used for intraspecific genetic differentiation of the causative agent of pseudotuberculosis.
About the Authors
A. L. TrukhachevRussian Federation
Aleksey L. Trukhachev
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
M. G. Meloyan
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
E. A. Voskresenskaya
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation
A. S. Vodop’yanov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
S. O. Vodop’yanov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
O. N. Podladchikova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
R. V. Pisanov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
M. V. Chesnokova
Russian Federation
78, Trilissera St., Irkutsk, 664047, Russian Federation
V. A. Rykova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
D. A. Kuznetsova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
V. T. Klimov
Russian Federation
78, Trilissera St., Irkutsk, 664047, Russian Federation
G. I. Kokorina
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation
E. A. Bogumil’chik
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation
References
1. European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2015. EFSA J. 2016; 14(12):4634. DOI: 10.2903/j.efsa.2016.4634.
2. [On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2020: State Report]. Moscow: Federal Service for Surveillance on Consumers Rights Protection and Human Well-being; 2021. 256 p.
3. Voskresenskaya E.A., Burgasova O.A. [Methods of genetic typing of Yersinia pseudotuberculosis]. Infektsionnye Bolezni [Infectious Diseases]. 2011; 9(2):81–8.
4. Karimova T.V., Klimov V.T., Chesnokova M.V. [Molecularbiological characteristics of Yersinia pseudotuberculosis and Yersinia enterocolitica isolated in Siberia and the Far East]. [Bulletin of the East Siberian Scientific Center of the Siberian Branch of the Russian Academy of Medical Sciences]. 2016; 1(3-1):60–4.
5. Voskressenskaya E., Leclercq A., Tseneva G., Carniel E. Evaluation of ribotyping as a tool for molecular typing of Yersinia pseudotuberculosis strains of worldwide origin. J. Clin. Microbiol. 2005; 43(12):6155–60. DOI: 10.1128/JCM.43.12.6155-6160.2005.
6. Torrea G., Chenal-Francisque V., Leclercq A., Carniel E. Efficient tracing of global isolates of Yersinia pestis by restriction fragment length polymorphism analysis using three insertion sequences as probes. J. Clin. Microbiol. 2006; 44(6):2084–92. DOI: 10.1128/JCM.02618-05.
7. Voskresenskaya E., Savin C., Leclercq A., Tseneva G., Carniel E. Typing and clustering of Yersinia pseudotuberculosis isolates by restriction fragment length polymorphism analysis using insertion sequences. J. Clin. Microbiol. 2014; 52(6):1978–89. DOI: 10.1128/JCM.00397-14.
8. Halkilahti J., Haukka K., Siitonen A. Genotyping of outbreak-associated and sporadic Yersinia pseudotuberculosis strains by novel multilocus variable-number tandem repeat analysis (MLVA). J. Microbiol. Methods. 2013; 95(2):245–50. DOI: 10.1016/j.mimet.2013.09.007.
9. Evseeva V.V., Platonov M.E., Dentovskaya S.V., Anisimov A.P. [Yersinia pseudotuberculosis typing using multi-locus variablenumber tandem repeat analysis]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2015; (4):55–7. DOI: 10.21055/0370-1069-2015-4-55-57.
10. Zhgenti E., Hu P., Chanturia G., Tsereteli D., Kekelidze M., Chubinidze S., Zangaladze E., Imnadze P., Andersen G., Torok T. Investigation of Yersinia pestis and Yersinia pseudotuberculosis strains from Georgia and neighboring countries in the Caucasus by high-density SNP microarray. Arch. Microbiol. 2018; 200(9):1345–55. DOI: 10.1007/s00203-018-1545-8.
11. Dzhaparova A.K., Eroshenko G.A., Nikiforov K.A., Kukleva L.M., Al’khova Z.V., Berdiev S.K., Kutyrev V.V. [Characteristics and phylogenetic analysis of Yersinia pseudotuberculosis strains from the Sarydzhaz high-mountain focus in the Tien-Shan]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2021; (2):87–93. DOI: 10.21055/0370-1069-2021-2-87-93.
12. Seecharran T., Kalin-Manttari L., Koskela K., Nikkari S., Dickins B., Corander J., Skurnik M., McNally A. Phylogeographic separation and formation of sexually discrete lineages in a global population of Yersinia pseudotuberculosis. Microb. Genom. 2017; 3(10):e000133. DOI: 10.1099/mgen.0.000133.
13. Peretolchina N.P., Klimov V.T., Voskresenskaya E.A., Kokorina G.I., Bogumilchik E.A., Trukhachev A.L., Igumnova S.V., Dzhioev Y.P., Zlobin V.I. [CRISPR-CAS loci of Yersinia pseudotuberculosis strains with different genetic determinants]. Epidemiologiya i Vaktsinoprofilaktika [Epidemiology and Vaccinal Prevention]. 2020; 19(2):31–9. DOI: 10.31631/2073-3046-2020-19-2-31-39.
14. Hall M., Chattaway M.A., Reuter S., Savin C., Strauch E., Carniel E., Connor T., Van Damme I., Rajakaruna L., Rajendram D., Jenkins C., Thomson N.R., McNally A. Use of whole-genus genome sequence data to develop a multilocus sequence typing tool that accurately identifies Yersinia isolates to the species and subspecies levels. J. Clin. Microbiol. 2015; 53(1):35–42. DOI: 10.1128/JCM.02395-14.
15. Duan R., Liang J., Shi G., Cui Z., Hai R., Wang P., Xiao Y., Li K., Qiu H., Gu W., Du X., Jing H., Wang X. Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. J. Clin. Microbiol. 2014; 52(1):20–9. DOI: 10.1128/JCM.02185-13.
Review
For citations:
Trukhachev A.L., Meloyan M.G., Voskresenskaya E.A., Vodop’yanov A.S., Vodop’yanov S.O., Podladchikova O.N., Pisanov R.V., Chesnokova M.V., Rykova V.A., Kuznetsova D.A., Klimov V.T., Kokorina G.I., Bogumil’chik E.A. INDEL-Typing of Yersinia pseudotuberculosis Strains. Problems of Particularly Dangerous Infections. 2022;(4):102-109. (In Russ.) https://doi.org/10.21055/0370-1069-2022-4-102-109