Preview

Problems of Particularly Dangerous Infections

Advanced search

Effect of Yersinia pestis on the Soil Nematodes Panagrolaimus sp. from the Gorno-Altai High-Mountain Focus of Plague

https://doi.org/10.21055/0370-1069-2023-2-127-133

Abstract

The aim of the work was to study interaction of Yersinia pestis with soil nematodes isolated on the territory of the Gorno-Altai high-mountain plague focus.
Materials and methods. We used the fluorescent Y. pestis strain KM2083, a derivative of the natural strain of the 4.ANT phylogenetic line, the antique biovar of the main subspecies, and a nematode culture isolated in the same area of the Gorno-Altai plague focus. The taxonomy of nematodes was determined by the region of the 18S rRNA gene; phylogenetic analysis was performed using the Maximum Likelihood method based on the Tamura-Nei model in the Mega 7.0 software. The interaction of the Y. pestis KM2083 strain and the nematodes was studied during cultivation on a solid NGM agar medium. Nematodes were observed using microscopes Stemi-2000C (Carl Zeiss, Germany) and Axio Imager Z2 (Carl Zeiss, Germany).
Results and discussion. It has been established that the nematodes from the Gorno-Altai high-mountain plague focus used in the work belong to the genus Panagrolaimus. Cultivation of nematodes on the lawn of the Y. pestis strain of the main subspecies of antique biovar, the 4.ANT phylogenetic line for 24 hours did not lead to a reduction in the lifespan of nematodes compared to the control sample, which indicates the absence of toxicity of the used strain towards Panagrolaimus nematodes. On the cuticle of nematodes, the formation of a biofilm in the genital area and tail has been noted, and accumulations of fluorescent cells of the plague pathogen observed in the digestive tract. The data obtained can indicate the ability of nematodes to carry the plague pathogen in the soil biocoenosis.

About the Authors

M. A. Makashova
Russian Reserach Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



E. G. Oglodin
Russian Reserach Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



N. A. Sharapova
Russian Reserach Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



A. E. Samoilov
Research Institute of Systems Biology and Medicine
Russian Federation

18, Naychny Proezd St., Moscow, 117246



G. A. Eroshenko
Russian Reserach Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



V. V. Kutyrev
Russian Reserach Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



References

1. Goodrich-Blair H., Clarke D.J. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbiol. 2007; 64(2):260–8. DOI: 10.1111/j.1365-2958.2007.05671.x.

2. Darby C., Hsu J.W., Ghori N., Falkow S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature. 2002; 417(6886):243–44. DOI: 10.1038/417243a.

3. Eroshenko G.A., Vidyaeva N.A., Kukleva L.M., Koshel’ E.I., Odinokov G.N., Shavina N.Yu., Knyazeva T.V., Mokrousova T.V., Krasnov Y.M., Anisimova L.V., Novichkova L.A., Erokhin P.S., Boiko A.V., Kutyrev V.V. [Studies of biofilm formation in nonpigmented and plasmid-deprived mutants of Yersinia pestis on biotic surfaces, in vivo and in vitro conditions]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2012; (3):45–9. DOI: 10.21055/0370-1069-2012-3-45-49.

4. Styer K.L., Hopkins G.W., Bartra S.S., Plano G.V., Frothingham R., Aballay A. Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO Rep. 2005; 6(10):992–7. DOI: 10.1038/sj.embor.7400516.

5. Bartra S.S., Styer K.L., O’Bryant D.M., Nilles M.L., Hinnebusch B.J., Aballay A., Plano G.V. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect. Immun. 2008; 76(2):612–2. DOI: 10.1128/IAI.01125-07.

6. Kutyrev V.V., Eroshenko G.A., Popov N.V., Vidyaeva N.A., Konnov N.P. [Molecular mechanisms of interaction between the plague pathogen and invertebrates]. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 2009; (4):6–13.

7. Koshel’ E.I., Eroshenko G.A., Vidyaeva N.A., Anisimova L.V., Novichkova L.A., Kutyrev V.V. [Features of biofilm formation in strains of Yersinia pestis of the main and non-main subspecies]. Infektsionnye Bolezni [Infectious Diseases]. 2012; 10(S1):201.

8. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974; 77(1):71–94. DOI: 10.1093/genetics/77.1.71.

9. Blaxter M.L., De Ley P., Garey J.R., Liu L.X., Scheldeman P., Vierstraete A., Vanfleteren J.R., Mackey L.Y., Dorris M., Frisse L.M., Vida J.T., Thomas W.K. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998; 392(6671):71–5. DOI: 10.1038/32160.

10. Holterman M., Schratzberger M., Helder J. Nematodes as evolutionary commuters between marine, freshwater and terrestrial habitats. Biol. J. Linn. Soc. 2019; 128(3):756–67. DOI: 10.1093/biolinnean/blz107.

11. Gagarin V.G. [Free-Living Nematodes of Fresh Waters of Russia and Neighboring Countries: Fauna and Ways of Its Formation, Ecology, Taxonomy, Phylogeny]. Moscow: Nauka; 2001. 170 p.

12. Sushchuk A.A., Matveeva E.M., Kalinkina D.S., Yurkevich M.G. Communities of soil nematodes of typical biocenoses in the Republic of Altai. Zoologichesky Zhurnal [Zoological Journal]. 2022; 101(10):1083–95. DOI: 10.31857/S0044513422100129.

13. Tan L., Darby C. Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol. Microbiol. 2006; 61(4):861– 70. DOI: 10.1111/j.1365-2958.2006.05265.x.

14. Thutupalli S., Uppaluri S., Constable G.W., Levin S.A., Stone H.A., Tarnita C.E., Brangwynne C.P. Farming and public goods production in Caenorhabditis elegans populations. Proc. Natl Acad. Sci. USA. 2017; 114(9):2289–94. DOI: 10.1073/pnas.1608961114.

15. Ramot D., Johnson B.E., Berry T.L. Jr, Carnell L., Goodman M.B. The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One. 2008; 3(5):e2208. DOI: 10.1371/journal.pone.0002208.

16. Balakhonov S.V., Tsendzhav S., Erdenebat A. [New plasmidovars of plague pathogen strains isolated in Mongolia]. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 1991; (11):27–9.

17. Oglodin E.G., Eroshenko G.A., Kukleva L.M., Odinokov G.N., Guseva N.P., Bugorkova S.A., Kutyrev V.V. [Structuralfunctional analysis of cryptic plasmids in Yersinia pestis strains from two natural plague foci of Russia]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2015; (4):82–5. DOI: 10.21055/0370-1069-2015-4-82-85.

18. Afanas’ev M.V., Balakhonov S.V., Tokmakova E.G., Polovinkina V.S., Sidorova E.A., Sin’kov V.V. [Analysis of the nucleotide sequence of Yersinia pestis cryptic plasmid pTP33 from the Tuva natural plague focus]. Genetika [Genetics]. 2016; 52(9):1012– 20. DOI: 10.7868/S0016675816090022.

19. Bazanova L.P., Tokmakova E.G., Voronova G.A., Balakhonov S.V. [Effect of Yersinia pestis plasmid composition on biofilm formation in fleas with different vector activity]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 2018; (2):76–83.


Review

For citations:


Makashova M.A., Oglodin E.G., Sharapova N.A., Samoilov A.E., Eroshenko G.A., Kutyrev V.V. Effect of Yersinia pestis on the Soil Nematodes Panagrolaimus sp. from the Gorno-Altai High-Mountain Focus of Plague. Problems of Particularly Dangerous Infections. 2023;(2):127-133. (In Russ.) https://doi.org/10.21055/0370-1069-2023-2-127-133

Views: 417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)