Preview

Problems of Particularly Dangerous Infections

Advanced search

Disinfection of Surfaces Contaminated with SARS-CoV-2 Coronavirus by UV Radiation of Low-Pressure Mercury-Vapour Lamp

https://doi.org/10.21055/0370-1069-2023-2-134-139

Abstract

The aim of the work was to determine the effective ultraviolet (UV) doses required for the disinfection of surfaces contaminated with the SARS-CoV-2 coronavirus using a low-pressure mercury lamp.
Materials and methods. To carry out prompt disinfection of surfaces, a specially designed source of UV radiation with a power of 7.5 W at a wavelength of 254 nm in the form of a portable flashlight was employed, which has a high efficiency of UV radiation output and the possibility of long-term autonomous operation from a compact battery. In the studies, a suspension culture of the SARS-CoV-2 coronavirus with biological activity of 5.3∙106 PFU/ml was used. The objects of testing were plastic Petri dishes (disposable) and office paper (grade C, density 80 g/m2 ).
Results and discussion. Doses of UV radiation that provide disinfection of surfaces contaminated with the COVID-19 pathogen with an efficiency of 99.0 % (paper) to 99.95 % (plastic) have been determined. The results obtained make it possible to recommend a portable UV irradiator for use in the practice of preventive measures to combat the spread of the disease caused by the SARS-CoV-2 coronavirus.

About the Authors

D. N. Masyakin
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



A. E. Alferov
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



S. G. Kikot’
Directorate of the Chief of Radiation, Chemical and Biological Protection Troops of the Armed Forces of the Russian Federation
Russian Federation

2/2, Frunzenskaya Embankment, Moscow, 119526



I. A. Androshchuk
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



V. B. Kirillov
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



S. L. Kirillova
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



E. A. Koval’chuk
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



M. A. Kotov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation

101, bld. 1,Vernadskogo Avenue, Moscow, 119526



V. А. Lopota
Russian State Scientific Centre for Robotics and Technical Cybernetics
Russian Federation

21, Tikhoretsky Avenue, Saint-Petersburg, 194064



I. G. Rudoy
Innovative Scientific and Technological Company “ProTech”
Russian Federation

7, bld. 2, Svobodny Avenue, Moscow, 111555



N. G. Solov’ev
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation

101, bld. 1,Vernadskogo Avenue, Moscow, 119526



A. M. Soroka
Innovative Scientific and Technological Company “ProTech”
Russian Federation

7, bld. 2, Svobodny Avenue, Moscow, 111555



V. V. Trufanova
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



N. Ya. Chepurenkov
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



A. N. Shemyakin
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation

101, bld. 1,Vernadskogo Avenue, Moscow, 119526



M. Yu. Yakimov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation

101, bld. 1,Vernadskogo Avenue, Moscow, 119526



S. V. Borisevich
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktybrskaya St., Sergiev Posad-6, Moscow Region, 141306



References

1. van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., Lloyd-Smith J.O., de Wit E., Munster V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Medicine. 2020; 382(16):1564–7. DOI: 10.1056/NEJMc2004973.

2. Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.L., Chan M.C.W., Peiris M., Poon L.L.M. Stability of SARSCoV-2 in different environmental conditions. Lancet Microbe. 2020; 1(1):e10. DOI: 10.1016/S2666-5247(20)30003-3.

3. Seyer A., Sanlidag T. Solar ultraviolet radiation sensitivity of SARS-CoV-2. Lancet Microbe. 2020; 1(1):e8-e9. DOI: 10.1016/S2666-5247(20)30013-6.

4. Bai Y., Yao L., Wei T., Tian F., Jin D.Y. Chen L., Wang M. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020; 323(14):1406–7. DOI: 10.1001/jama.2020.2565.

5. Cevik M., Tate M., Lloyd O., Maraolo A.E., Schafers J., Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021; 2(1):е13-е22. DOI: 10.1016/S2666-5247(20)30172-5.

6. Gerlach M., Wolff S., Ludwig S., Schäfer W., Keiner B., Roth N.J., Widmer E. Rapid SARS-CoV-2 inactivation by commonly available chemicals on inanimate surfaces. J. Hosp. Infect. 2020; 106(3):633–4. DOI: 10.1016/j.jhin.2020.09.001.

7. Meyers С., Kass R., Goldenberg D., Milici J., Alam J., Robinson R. Ethanol and isopropanol inactivation of human coronavirus on hard surfaces. J. Hosp. Infect. 2021; 107:45–9. DOI: 10.1016/j.jhin.2020.09.026.

8. Kowalski W. Ultraviolet Germicidal Irradiation Handbook. Berlin-Heidelberg: Springer-Verlag; 2009. 503 p. DOI: 10.1007/978-3-642-01999-9.

9. Reed N.G. The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep. 2010; 125(1):15–27. DOI: 10.1177/003335491012500105.

10. Hirano N., Hind S., Fujiwara K. Physico-chemical properties of mouse hepatitis virus (MHV-2) grown on DBT cell culture. Microbiol. Immunol. 1978; 22(7):377–90. DOI: 10.1111/j.13480421.1978.tb00384.x.

11. Saknimit M., Inatsuki I., Sugiyama Y., Yagami K. Virucidal efficacy of physico-chemical treatments against coronaviruses and parvoviruses of laboratory animals. Jikken Dobutsu. Experimental Animals. 1988; 37(3):341–5. DOI: 10.1538/expanim1978.37.3_341.

12. Walker C., Ko G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ. Sci. Technol. 2007; 41(15):5460–5. DOI: 10.1021/es070056u.

13. Storm N., McKay L.G.A., Downs S.N., Johnson R.I., Birru D., de Samber M., Willaert W., Gennini G., Griffiths A. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. Sci. Rep. 2020; 10(1):22421. DOI: 10.1038/s41598-020-79600-8.

14. Heilingloh C.S., Aufderhorst U.W., Schipper L., Dittmer U., Witzke O., Yang D., Zheng X., Sutter K., Trilling M., Alt M., Steinmann E., Krawczyk A. Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control. 2020; 48(10):1273–5. DOI: 10.1016/j.ajic.2020.07.031.

15. Ruetalo N., Businger R., Schindler M. Rapid, dose-dependent and efficient inactivation of surface dried SARS-CoV-2 by 254 nm UV-C irradiation. Euro Surveill. 2021; 26(42):2001718. DOI: 10.2807/1560-7917.ES.2021.26.42.2001718.

16. Inagaki H., Saito A., Sugiyama H., Okabayashi T., Fujimoto S. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerg. Microbes Infect. 2020; 9(1):1744–7. DOI: 10.1080/22221751.2020.1796529.

17. Kitagawa H., Nomura T., Nazmul T., Kawano R., Omori K., Shigemoto N., Sakaguchi T., Ohge H. Effect of intermittent irradiation and fluence-response of 222 nm ultraviolet light on SARS-CoV-2 contamination. Photodiagnosis Photodyn. Ther. 2021; 33:102184. DOI: 10.1016/j.pdpdt.2021.102184.

18. Buonanno M., Welch D., Shuryak I., Brenner D.J. FarUVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 2020; 10(1):10285. DOI: 10.1038/s41598-020-67211-2.


Review

For citations:


Masyakin D.N., Alferov A.E., Kikot’ S.G., Androshchuk I.A., Kirillov V.B., Kirillova S.L., Koval’chuk E.A., Kotov M.A., Lopota V.А., Rudoy I.G., Solov’ev N.G., Soroka A.M., Trufanova V.V., Chepurenkov N.Ya., Shemyakin A.N., Yakimov M.Yu., Borisevich S.V. Disinfection of Surfaces Contaminated with SARS-CoV-2 Coronavirus by UV Radiation of Low-Pressure Mercury-Vapour Lamp. Problems of Particularly Dangerous Infections. 2023;(2):134-139. (In Russ.) https://doi.org/10.21055/0370-1069-2023-2-134-139

Views: 525


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)