Preview

Problems of Particularly Dangerous Infections

Advanced search

Detection of SARS‑CoV‑2 S Gene Mutations Using PCR during Seasons of Increased Incidence of Coronavirus Infection in the Chuvash Republic

https://doi.org/10.21055/0370-1069-2023-4-156-159

Abstract

Mutations in the SARS‑CoV‑2 genome make it possible to effectively escape defense mechanisms of the host, which explains the spread of infection among vaccinated or previously affected by the virus individuals.

The aim of the study was to investigate the dynamics of mutations in the SARS‑CoV‑2 virus genome during the rise of the seasonal incidence in the Chuvash Republic.

Materials and methods. Under conditions of the clinical diagnostic laboratory of the Federal Center for Traumatology, Orthopedics and Endoprosthetics of the Ministry of Health of Russia (Cheboksary), samples, containing SARS‑CoV‑2 RNA, taken in January-February and July-October, 2022 were tested using reverse transcription PCR. The “MBS-Test SARS‑CoV‑2 RNA” (Technical Specifications 21.20.23-068-26329720-2021, Russia) and “AmpliTest SARS‑CoV‑2 VOC v.3” (Series V017, Certificate of Registration No. 2022/16307, Russia) were utilized in compliance with the manufacturer’s instructions.

Results and discussion. Variations in the sets of SARS‑CoV‑2 S gene mutations have been revealed in the studied samples obtained during different periods of the spread of SARS‑CoV‑2 coronavirus. Timely detection of various mutations in the virus genome at the beginning of the epidemiological season and the alleged rise in the incidence of coronavirus infection is valuable information for forecasting the rate of virus transmission. It can also be used to create vaccines (taking into account changes in the virus genome) and to choose the adequate tactics for treating coronavirus infection.

About the Authors

N. P. Prishchepa
Federal Center for Traumatology, Orthopedics, and Endoprosthetics of the Ministry of Health of the Russian Federation
Russian Federation

33, Fedora Gladkova St., Cheboksary, 428020



N. Yu. Dobrovol’skaya
Federal Center for Traumatology, Orthopedics, and Endoprosthetics of the Ministry of Health of the Russian Federation
Russian Federation

33, Fedora Gladkova St., Cheboksary, 428020



V. I. Nikiforova
Federal Center for Traumatology, Orthopedics, and Endoprosthetics of the Ministry of Health of the Russian Federation
Russian Federation

33, Fedora Gladkova St., Cheboksary, 428020



T. S. Tarasova
Federal Center for Traumatology, Orthopedics, and Endoprosthetics of the Ministry of Health of the Russian Federation
Russian Federation

33, Fedora Gladkova St., Cheboksary, 428020



E. V. Preobrazhenskaya
Federal Center for Traumatology, Orthopedics, and Endoprosthetics of the Ministry of Health of the Russian Federation
Russian Federation

33, Fedora Gladkova St., Cheboksary, 428020



References

1. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). 30 January 2020. WHO. (Cited 31 May 2023). [Internet]. Available from: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meetingofthe-international-health-regulations-(2005)-emergency-committeeregarding-the-outbreak-of-novel-coronavirus-(2019-ncov).

2. Lupala C.S., Ye Y., Chen H., Su X.D., Liu H. Mutations on RBD of SARS CoV 2 Omicron variant result in stronger binding to human ACE2 receptor. Biochem. Biophys. Res. Commun. 2022; 590:34–41. DOI: 10.1016/j.bbrc.2021.12.079.

3. Hirabara S.M., Serdan T.D.A., Gorjao R., Masi L.N., Pithon-Curi T.C., Covas D.T., Curi R., Durigon E.L. SARS COV 2 variants: differences and potential of immune evasion. Front. Cell. Infect. Microbiol. 2022; 11:781429. DOI: 10.3389/fcimb.2021.781429.

4. Motozono C., Toyoda M., Zahradnik J., Saito A., Nasser H., Tan T.S., Ngare I., Kimura I., Uriu K., Kosugi Y., Yue Y., Shimizu R., Ito J., Torii S., Yonekawa A., Shimono N., Nagasaki Y., Minami R., Toya T., Sekiya N., Fukuhara T., Matsuura Y., Schreiber G.; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ikeda T., Nakagawa S., Ueno T., Sato K. SARS CoV 2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021; 29(7):1124–1136.e11. DOI: 10.1016/j.chom.2021.06.006.

5. Wang Q., Guo Y., Iketani S., Nair M.S., Li Z., Mohri H., Wang M., Yu J., Bowen A.D., Chang J.Y., Shah J.G., Nguyen N., Chen Z., Meyers K., Yin M.T., Sobieszczyk M.E., Sheng Z., Huang Y., Liu L., Ho D.D. Antibody evasion by SARS CoV 2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022; 608(7923):603–8. DOI: 10.1038/s41586-022-05053-w.

6. Zhao X., Zhang R., Qiao S., Wang X., Zhang W., Ruan W., Dai L., Han P., Gao G.F. Omicron SARS CoV 2 neutralization from inactivated and ZF2001 vaccines. N. Engl. J. Med. 2022; 387(3):277– 80. DOI: 10.1056/NEJMc2206900.

7. Deng X., Garcia-Knight M.A., Khalid M.M., Servellita V., Wang C., Morris M.K., Sotomayor-González A., Glasner D.R., Reyes K.R., Gliwa A.S., Reddy N.P., Sanchez San Martin C., Federman S., Cheng J., Balcerek J., Taylor J., Streithorst J.A., Miller S., Sreekumar B., Chen P.Y., Schulze-Gahmen U., Taha T.Y., Hayashi J.M., Simoneau C.R., Kumar G.R., McMahon S., Lidsky P.V., Xiao Y., Hemarajata P., Green N.M., Espinosa A., Kath C., Haw M., Bell J., Hacker J.K., Hanson C., Wadford D.A., Anaya C., Ferguson D., Frankino P.A., Shivram H., Lareau L.F., Wyman S.K., Ott M., Andino R., Chiu C.Y. Transmission, infectivity, and neutralization of a spike L452R SARS CoV 2 variant. Cell. 2021; 184(13):3426–3437.e8. DOI: 10.1016/j.cell.2021.04.025.

8. Ou J., Wu J., Zhang Q. Structural insights into the Omicron spike trimer: tackling the challenges of continuously evolving SARS CoV 2 variants. Signal Transduct. Target. Ther. 2022; 7(1):322. DOI: 10.1038/s41392-022-01179-5.

9. Chung H.Y., Jian M.J., Chang C.K., Lin J.C., Yeh K.M., Chen C.W., Hsieh S.S., Hung K.S., Tang S.H., Perng C.L., Chang F.Y., Wang C.H., Shang H.S. Emergency SARS CoV 2 variants of concern: novel multiplex real-time RT-PCR assay for rapid detection and surveillance. Microbiol. Spectr. 2022; 10(1):e0251321. DOI: 10.1128/spectrum.02513-21.

10. Saito A., Irie T., Suzuki R., Maemura T., Nasser H., Uriu K., Kosugi Y., Shirakawa K., Sadamasu K., Kimura I., Ito J., Wu J., Iwatsuki-Horimoto K., Ito M., Yamayoshi S., Loeber S., Tsuda M., Wang L., Ozono S., Butlertanaka E.P., Tanaka Y.L., Shimizu R., Shimizu K., Yoshimatsu K., Kawabata R., Sakaguchi T., Tokunaga K., Yoshida I., Asakura H., Nagashima M., Kazuma Y., Nomura R., Horisawa Y., Yoshimura K., Takaori-Kondo A., Imai M.; Genotype to Phenotype Japan (G2P-Japan) Consortium; Tanaka S., Nakagawa S., Ikeda T., Fukuhara T., Kawaoka Y., Sato K. Enhanced fusogenicity and pathogenicity of SARS CoV 2 Delta P681R mutation. Nature. 2022; 602(7896):300–6. DOI: 10.1038/s41586-021-04266-9.

11. Ou J., Lan W., Wu X., Zhao T., Duan B., Yang P., Ren Y., Quan L., Zhao W., Seto D., Chodosh J., Luo Z., Wu J., Zhang Q. Tracking SARS CoV 2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct. Target. Ther. 2022; 7(1):138. DOI: 10.1038/s41392-022-00992-2.

12. Zhang Y., Zhang T., Fang Y., Liu J., Ye Q., Ding L. SARS CoV 2 spike L452R mutation increases Omicron variant fusogenicity and infectivity as well as host glycolysis. Signal Transduct. Target. Ther. 2022; 7(1):76. DOI: 10.1038/s41392-022-00941-z.

13. Boehm E., Kronig I., Neher R.A., Eckerle I., Vetter P., Kaiser L.; Geneva Centre for Emerging Viral Diseases. Novel SARS CoV 2 variants: the pandemics within the pandemic. Clin. Microbiol. Infect. 2021; 27(8):1109–17. DOI: 10.1016/j.cmi.2021.05.022.

14. Badua C.L.D.C., Baldo K.A.T., Medina P.M.B. Genomic and proteomic mutation landscapes of SARS CoV 2. J. Med. Virol. 2021; 93(3):1702–21. DOI: 10.1002/jmv.26548.

15. Cosar B., Karagulleoglu Z.Y., Unal S., Ince A.T., Uncuoglu D.B., Tuncer G., Kilinc B.R., Ozkan Y.E., Ozkoc H.C., Demir I.N., Eker A., Karagoz F., Simsek S.Y., Yasar B., Pala M., Demir A., Atak I.N., Mendi A.H., Bengi V.U., Cengiz Seval G., Gunes Altuntas E., Kilic P., Demir-Dora D. SARS CoV 2 mutations and their viral variants. Cytokine Growth Factor Rev. 2022; 63:10–22. DOI: 10.1016/j.cytogfr.2021.06.001.


Review

For citations:


Prishchepa N.P., Dobrovol’skaya N.Yu., Nikiforova V.I., Tarasova T.S., Preobrazhenskaya E.V. Detection of SARS‑CoV‑2 S Gene Mutations Using PCR during Seasons of Increased Incidence of Coronavirus Infection in the Chuvash Republic. Problems of Particularly Dangerous Infections. 2023;(4):156-159. (In Russ.) https://doi.org/10.21055/0370-1069-2023-4-156-159

Views: 298


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)