Оральные вакцины для профилактики бактериальных инфекций: стратегии и перспективы разработок
https://doi.org/10.21055/0370-1069-2024-2-51-61
Аннотация
Оральные вакцины привлекают все больше внимания из-за простоты введения, меньшей инвазивности и большей безопасности в целом. В обзоре обсуждаются преимущества перорального способа вакцинации, позволяющего стимулировать гуморальные и клеточные иммунные реакции на системном уровне и слизистых оболочках для обеспечения более широкой и долговременной защиты. Проанализированы аспекты, связанные со строением кишечника и иммунологическим распознаванием антигена в ходе процесса трансформации после проникновения в кишечник. Рассмотрены подходы, применяемые для повышения эффективности оральных вакцин. Обсуждаются такие проблемы, как нестабильность и недостаточная эффективность оральных вакцин, а также недавние разработки адъювантов и систем доставки на основе минеральных солей, веществ микробного происхождения, сапонинов, полимеров, микро- и наночастиц, липосом, обладающих потенциалом для повышения эффективности оральных вакцин. Дан краткий анализ лицензированных оральных вакцин и обобщены данные по разработке прототипов вакцинных препаратов с использованием современных методов генетики, молекулярной биологии и иммунологии, а также механизмов индуцирования иммунного ответа.
Ключевые слова
Об авторах
Т. Э. СветочРоссия
Cветоч Татьяна Эдуардовна,
142279, Московская область, г.о. Серпухов, р.п. Оболенск, Территория «Квартал А», 24
А. С. Трунякова
Россия
142279, Московская область, г.о. Серпухов, р.п. Оболенск, Территория «Квартал А», 24
С. В. Дентовская
Россия
142279, Московская область, г.о. Серпухов, р.п. Оболенск, Территория «Квартал А», 24
Список литературы
1. Медуницын Н.В., Катлинский А.В., Ворслов Л.О. Вакцинология. М.: Практическая медицина; 2022. 480 с.
2. Lycke N., Bemark M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol. 2010; 3(6):556–66. DOI: 10.1038/mi.2010.54.
3. Pietrzak B., Tomela K., Olejnik-Schmidt A., Mackiewicz A., Schmidt M. Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int. J. Mol. Sci. 2020; 21(23):9254. DOI: 10.3390/ijms21239254.
4. Mowat A.M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 2003; 3(4):331–41. DOI: 10.1038/nri1057.
5. Chen Y., Kuchroo V.K., Inobe J., Hafler D.A., Weiner H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994; 265(5176):1237–40. DOI: 10.1126/science.7520605.
6. Groux H., O’Garra A., Bigler M., Rouleau M., Antonenko S., de Vries J.E., Roncarolo M.G. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997; 389(6652):737–42. DOI: 10.1038/39614.
7. Polanski M., Melican N.S., Zhang J., Weiner H.L. Oral administration of the immunodominant B-chain of insulin reduces diabetes in a co-transfer model of diabetes in the NOD mouse and is associated with a switch from Th1 to Th2 cytokines. J. Autoimmun. 1997; 10(4):339–46. DOI: 10.1006/jaut.1997.0148.
8. Thornton A.M., Shevach E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998; 188(2):287–96. DOI: 10.1084/jem.188.2.287.
9. Kang S.H., Hong S.J., Lee Y.K., Cho S. Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting. Polymers (Basel). 2018; 10(9):948. DOI: 10.3390/polym10090948.
10. Marasini N., Skwarczynski M., Toth I. Oral delivery of nanoparticle-based vaccines. Expert Rev. Vaccines. 2014; 13(11):1361–76. DOI: 10.1586/14760584.2014.936852.
11. Kunisawa J., Kurashima Y., Kiyono H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug Deliv. Rev. 2012; 64(6):523–30. DOI: 10.1016/j.addr.2011.07.003.
12. Ensign L.M., Cone R., Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012; 64(6):557–70. DOI: 10.1016/j.addr.2011.12.009.
13. Mowat A.M., Agace W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014; 14(10):667– 85. DOI: 10.1038/nri3738.
14. Cruz L.J., Tacken P.J., Rueda F., Domingo J.C., Albericio F., Figdor C.G. Targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol. 2012; 509:143–63. DOI: 10.1016/B978-0-12-391858-1.00008-3.
15. Jepson M.A., Clark M.A., Hirst B.H. M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv. Drug Deliv. Rev. 2004; 56(4):511–25. DOI: 10.1016/j.addr.2003.10.018.
16. Roth-Walter F., Bohle B., Schöll I., Untersmayr E., Scheiner O., Boltz-Nitulescu G., Gabor F., Brayden D.J., Jensen-Jarolim E. Targeting antigens to murine and human M-cells with Aleuria aurantia lectin-functionalized microparticles. Immunol. Lett. 2005; 100(2):182–8. DOI: 10.1016/j.imlet.2005.03.020.
17. Hase K., Kawano K., Nochi T., Pontes G.S., Fukuda S., Ebisawa M., Kadokura K., Tobe T., Fujimura Y., Kawano S., Yabashi A., Waguri S., Nakato G., Kimura S., Murakami T., Iimura M., Hamura K., Fukuoka S., Lowe A.W., Itoh K., Kiyono H., Ohno H. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature. 2009; 462(7270):226–30. DOI: 10.1038/nature08529.
18. Garinot M., Fiévez V., Pourcelle V., Stoffelbach F., des Rieux A., Plapied L., Theate I., Freichels H., Jérôme C., Marchand-Brynaert J., Schneider Y.J., Préat V. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release. 2007; 120(3):195–204. DOI: 10.1016/j.jconrel.2007.04.021.
19. Tyrer P., Foxwell A.R., Cripps A.W., Apicella M.A., Kyd J.M. Microbial pattern recognition receptors mediate M-cell uptake of a gram-negative bacterium. Infect. Immun. 2006; 74(1):625–31. DOI: 10.1128/IAI.74.1.625-631.2006.
20. Nochi T., Yuki Y., Matsumura A., Mejima M., Terahara K., Kim D.Y., Fukuyama S., Iwatsuki-Horimoto K., Kawaoka Y., Kohda T., Kozaki S., Igarashi O., Kiyono H. A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigenspecific immune responses. J. Exp. Med. 2007; 204(12):2789–96. DOI: 10.1084/jem.20070607.
21. Payne K.J., Crooks G.M. Immune-cell lineage commitment: translation from mice to humans. Immunity. 2007; 26(6):674–7. DOI: 10.1016/j.immuni.2007.05.011.
22. Fievez V., Plapied L., Plaideau C., Legendre D., des Rieux A., Pourcelle V., Freichels H., Jérôme C., Marchand J., Préat V., Schneider Y.J. In vitro identification of targeting ligands of human M cells by phage display. Int. J. Pharm. 2010; 394(1-2):35–42. DOI: 10.1016/j.ijpharm.2010.04.023.
23. Vela Ramirez J.E., Sharpe L.A., Peppas N.A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 2017; 114:116–31. DOI: 10.1016/j.addr.2017.04.008.
24. Franchi L., Amer A., Body-Malapel M., Kanneganti T.D., Ozören N., Jagirdar R., Inohara N., Vandenabeele P., Bertin J., Coyle A., Grant E.P., Núñez G. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. 2006; 7(6):576–82. DOI: 10.1038/ni1346.
25. Uematsu S., Fujimoto K., Jang M.H., Yang B.G., Jung Y.J., Nishiyama M., Sato S., Tsujimura T., Yamamoto M., Yokota Y., Kiyono H., Miyasaka M., Ishii K.J., Akira S. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 2008; 9(7):769–76. DOI: 10.1038/ni.1622.
26. Zhu Q., Talton J., Zhang G., Cunningham T., Wang Z., Waters R.C., Kirk J., Eppler B., Klinman D.M., Sui Y., Gagnon S., Belyakov I.M., Mumper R.J., Berzofsky J.A. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat. Med. 2012; 18(8):1291–6. DOI: 10.1038/nm.2866.
27. Holmgren J., Czerkinsky C. Mucosal immunity and vaccines. Nat. Med. 2005; 11(4 Suppl.):S45-53. DOI: 10.1038/nm1213.
28. Sánchez J., Wallerström G., Fredriksson M., Angström J., Holmgren J. Detoxification of cholera toxin without removal of its immunoadjuvanticity by the addition of (STa-related) peptides to the catalytic subunit. A potential new strategy to generate immunostimulants for vaccination. J. Biol. Chem. 2002; 277(36):33369–77. DOI: 10.1074/jbc.M112337200.
29. Jazayeri S.D., Poh C.L. Development of universal influenza vaccines targeting conserved viral proteins. Vaccines (Basel). 2019; 7(4):169. DOI: 10.3390/vaccines7040169.
30. Silva A.L., Soema P.C., Slütter B., Ossendorp F., Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccin. Immunother. 2016; 12(4):1056–69. DOI: 10.1080/21645515.2015.1117714.
31. Wang D., Xu J., Feng Y., Liu Y., Mchenga S.S., Shan F., Sasaki J., Lu C. Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine. 2010; 28(18):3134–42. DOI: 10.1016/j.vaccine.2010.02.058.
32. Poorhassan F., Nemati F., Saffarian P., Mirhosseini S.A., Motamedi M.J. Design of a chitosan-based nano vaccine against epsilon toxin of Clostridium perfringens type D and evaluation of its immunogenicity in BALB/c mice. Res. Pharm. Sci. 2021; 16(6):575– 85. DOI: 10.4103/1735-5362.327504.
33. Kang S.H., Hong S.J., Lee Y.K., Cho S. Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting. Polymers (Basel). 2018; 10(9):948. DOI: 10.3390/polym10090948.
34. Шаров Д.А., Лещенко А.А., Багин С.В., Логвинов С.В., Мохов Д.А., Ежов А.В., Лазыкин А.Г., Крупин В.В., Косенков И.В. Усовершенствование технологии концентрирования микробных клеток в производстве вакцины чумной живой, таблетки для рассасывания. Проблемы особо опасных инфекций. 2020; 4:139–45. DOI: 10.21055/0370-1069-2020-4-139-145.
35. Holmgren J., Svennerholm A.M., Jertborn M., Clemens J., Sack D.A., Salenstedt R., Wigzell H. An oral B subunit: whole cell vaccine against cholera. Vaccine. 1992; 10(13):911–4. DOI: 10.1016/0264-410x(92)90324-d.
36. Freedman D.O. Re-born in the USA: Another cholera vaccine for travellers. Travel Med. Infect. Dis. 2016; 14(4):295–6. DOI: 10.1016/j.tmaid.2016.07.008.
37. Herzog C. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR. Travel Med. Infect. Dis. 2016; 14(4):373–7. DOI: 10.1016/j.tmaid.2016.07.003.
38. Онищенко Г.Г., Кутырев В.В., Щуковская Т.Н., Смирнова Н.И., Никифоров А.К., Еремин С.А., Топорков В.П. Специфическая профилактика холеры в современных условиях. Проблемы особо опасных инфекций. 2011; 1:5–12. DOI: 10.21055/0370-1069-2011-1(107)-5-12.
39. Shaikh H., Lynch J., Kim J., Excler J.L. Current and future cholera vaccines. Vaccine. 2020; 38(Suppl. 1):A118-A126. DOI: 10.1016/j.vaccine.2019.12.011.
40. Germanier R., Füer E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 1975; 131(5):553–8. DOI: 10.1093/infdis/131.5.553.
41. Cohen D., Green M.S., Block C., Slepon R., Ofek I. Prospective study of the association between serum antibodies to lipopolysaccharide O antigen and the attack rate of shigellosis. J. Clin. Microbiol. 1991; 29(2):386–9. DOI: 10.1128/jcm.29.2.386-389.1991.
42. Kotloff K.L., Pasetti M.F., Barry E.M., Nataro J.P., Wasserman S.S., Sztein M.B., Picking W.D., Levine M.M. Deletion in the Shigella enterotoxin genes further attenuates Shigella flexneri 2a bearing guanine auxotrophy in a phase 1 trial of CVD 1204 and CVD 1208. J. Infect. Dis. 2004; 190(10):1745–54. DOI: 10.1086/424680.
43. McKenzie R., Walker R.I., Nabors G.S., Van De Verg L.L., Carpenter C., Gomes G., Forbes E., Tian J.H., Yang H.H., Pace J.L., Jackson W.J., Bourgeois A.L. Safety and immunogenicity of an oral, inactivated, whole-cell vaccine for Shigella sonnei: preclinical studies and a Phase I trial. Vaccine. 2006; 24(18):3735–45. DOI: 10.1016/j.vaccine.2005.07.014.
44. Sagi S., Konduru B., Parida M. Heterologous expression of Intimin and IpaB fusion protein in Lactococcus lactis and its mucosal delivery elicit protection against pathogenicity of Escherichia coli O157 and Shigella flexneri in a murine model. Int. Immunopharmacol. 2020; 85:106617. DOI: 10.1016/j.intimp.2020.106617.
45. Harutyunyan S., Neuhauser I., Mayer A., Aichinger M., Szijártó V., Nagy G., Nagy E., Girardi P., Malinoski F.J., Henics T. Characterization of ShigETEC, a novel live attenuated combined vaccine against Shigellae and ETEC. Vaccines (Basel). 2020; 8(4):689. DOI: 10.3390/vaccines8040689.
46. Walker R.I. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children. Vaccine. 2015; 33(8):954–65. DOI: 10.1016/j.vaccine.2014.11.049.
47. Harro C., Sack D., Bourgeois A.L., Walker R., DeNearing B., Feller A., Chakraborty S., Buchwaldt C., Darsley M.J. A combination vaccine consisting of three live attenuated enterotoxigenic Escherichia coli strains expressing a range of colonization factors and heat-labile toxin subunit B is well tolerated and immunogenic in a placebo-controlled double-blind phase I trial in healthy adults. Clin. Vaccine Immunol. 2011; 18(12):2118–27. DOI: 10.1128/CVI.05342-11.
48. Seo H., Garcia C., Ruan X., Duan Q., Sack D.A., Zhang W. Preclinical characterization of immunogenicity and efficacy against diarrhea from MecVax, a multivalent enterotoxigenic E. coli vaccine candidate. Infect. Immun. 2021; 89(7):e0010621. DOI: 10.1128/IAI.00106-21.
49. Arshadi N., Mousavi Gargari S.L., Amani J., Nazarian S. Immunogenicity of inactivated Escherichia coli O157:H7 with Stx2B microparticle in mice. Iran J. Basic Med. Sci. 2022; 25(9):1069–76. DOI: 10.22038/IJBMS.2022.63775.14053.
50. Zhang L., Chen X., Ren B., Zhou X., Cheng L. Helicobacter pylori in the oral cavity: current evidence and potential survival strategies. Int. J. Mol. Sci. 2022; 23(21):13646. DOI: 10.3390/ijms232113646.
51. Chain P.S., Carniel E., Larimer F.W., Lamerdin J., Stoutland P.O., Regala W.M., Georgescu A.M., Vergez L.M., Land M.L., Motin V.L., Brubaker R.R., Fowler J., Hinnebusch J., Marceau M., Medigue C., Simonet M., Chenal-Francisque V., Souza B., Dacheux D., Elliott J.M., Derbise A., Hauser L.J., Garcia E. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA. 2004; 101(38):13826–31. DOI: 10.1073/pnas.0404012101.
52. Taylor V.L., Titball R.W., Oyston P.C.F. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology (Reading). 2005; 151(Pt. 6):1919–26. DOI: 10.1099/mic.0.27959-0.
53. Simonet M., Berche P., Mazigh D., Veron M. Protection against Yersinia infection induced by non-virulence-plasmid-encoded antigens. J. Med. Microbiol. 1985; 20(2):225–31. DOI: 10.1099/00222615-20-2-225.
54. Quintard B., Petit T., Ruvoen N., Carniel E., Demeure C.E. Efficacy of an oral live vaccine for veterinary use against pseudotuberculosis. Comp. Immunol. Microbiol. Infect. Dis. 2010; 33(6):e59– 65. DOI: 10.1016/j.cimid.2009.12.001.
55. Blisnick T., Ave P., Huerre M., Carniel E., Demeure C.E. Oral vaccination against bubonic plague using a live avirulent Yersinia pseudotuberculosis strain. Infect. Immun. 2008; 76(8):3808– 16. DOI: 10.1128/IAI.00034-08.
56. Derbise A., Cerdà Marín A., Ave P., Blisnick T., Huerre M., Carniel E., Demeure C.E. An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague. PLoS Negl. Trop. Dis. 2012; 6(2):e1528. DOI: 10.1371/journal.pntd.0001528.
57. Derbise A., Hanada Y., Khalifé M., Carniel E., Demeure C.E. Complete protection against pneumonic and bubonic plague after a single oral vaccination. PLoS Negl. Trop. Dis. 2015; 9(10):e0004162. DOI: 10.1371/journal.pntd.0004162.
58. Demeure C.E., Derbise A., Guillas C., Gerke C., Cauchemez S., Carniel E., Pizarro-Cerdá J. Humoral and cellular immune correlates of protection against bubonic plague by a live Yersinia pseudotuberculosis vaccine. Vaccine. 2019; 37(1):123–9. DOI: 10.1016/j.vaccine.2018.11.022.
59. Sun W., Sanapala S., Rahav H., Curtiss R. 3rd. Oral administration of a recombinant attenuated Yersinia pseudotuberculosis strain elicits protective immunity against plague. Vaccine. 2015; 33(48):6727–35. DOI: 10.1016/j.vaccine.2015.10.074.
60. Majumder S., Olson R.M., Singh A., Wang X., Li P., Kittana H., Anderson P.E., Anderson D.M., Sun W. Protection induced by oral vaccination with a recombinant Yersinia pseudotuberculosis delivering Yersinia pestis LcrV and F1 antigens in mice and rats against pneumonic plague. Infect. Immun. 2022; 90(8):e0016522. DOI: 10.1128/iai.00165-22.
61. Zhang S., Chao L., She L., Sui H., Niu H., Chen Z., Li X., Zhai J. Ag85A, as an S2 vaccine carrier, reduces the toxicity of the S2 vaccine and enhances the protective ability of mice against Brucella. J. Immunol. Res. 2022; 2022:4686541. DOI: 10.1155/2022/4686541.
62. Mohamadzadeh M., Durmaz E., Zadeh M., Pakanati K.C., Gramarossa M., Cohran V., Klaenhammer T.R. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol. 2010; 5(8):1289–96. DOI: 10.2217/fmb.10.78.
Рецензия
Для цитирования:
Светоч Т.Э., Трунякова А.С., Дентовская С.В. Оральные вакцины для профилактики бактериальных инфекций: стратегии и перспективы разработок. Проблемы особо опасных инфекций. 2024;(2):51-61. https://doi.org/10.21055/0370-1069-2024-2-51-61
For citation:
Svetoch T.E., Trunyakova A.S., Dentovskaya S.V. Oral Vaccines for Prevention of Bacterial Infections: Development Strategies and Prospects. Problems of Particularly Dangerous Infections. 2024;(2):51-61. (In Russ.) https://doi.org/10.21055/0370-1069-2024-2-51-61