Preview

Problems of Particularly Dangerous Infections

Advanced search

Features of Sporulation of the Main Genetic Lines of Bacillus anthracis

https://doi.org/10.21055/0370-1069-2024-2-76-82

Abstract

The aim of the work was to characterize sporulation genes and proteins in Bacillus anthracis strains of major genetic lineages.

Materials and methods. Genome analysis was carried out in silico using the genome of the Ames Ancestor strain as a reference one, 47 B. anthracis strains from the GenBank NCBI database, belonging to the main lineages A, B, C, the genome of the CI strain Bacillus cereus biovar anthracis, 7 strains from the collection of Stavropol Research Anti-Plague Institute of the Rospotrebnadzor, as well as the NCBI Protein Database resource. Identification of polymorphisms was performed in BLASTn, BLASTp, MEGA X, MAUVE, and Tandem Repeat Finder software. Gene and protein sequences were aligned using MEGA X program.

Results and discussion. A comparison of polymorphisms in sporulation proteins and genes of three major genetic lineages has showed that the number of all forms in B. anthracis strains of B, C lineages and Bacillus cereus biovar anthracis exceeds those in strains of lineage A by 4,5–10, 6,8–92 and 160–2078 times, respectively. A larger number of non-synonymous SNPs in sporulation genes with changes in the amino acid composition and function of proteins in B. anthracis strains of the major genetic lines B, C and B. cereus biovar anthracis than in strains of lineage A suggests their limited adaptive capabilities and may be one of the explanations for their lower prevalence as compared to line A.

About the Authors

E. I. Eremenko
Stavropol Research Anti-Plague Institute
Russian Federation

Evgeny I. Eremenko,

13–15, Sovetskaya St., Stavropol, 355035



A. G. Ryazanova
Stavropol Research Anti-Plague Institute
Russian Federation

13–15, Sovetskaya St., Stavropol, 355035



G. A. Pechkovsky
Stavropol Research Anti-Plague Institute
Russian Federation

13–15, Sovetskaya St., Stavropol, 355035



S. V. Pisarenko
Stavropol Research Anti-Plague Institute
Russian Federation

13–15, Sovetskaya St., Stavropol, 355035



D. A. Kovalev
Stavropol Research Anti-Plague Institute
Russian Federation

13–15, Sovetskaya St., Stavropol, 355035



L. Yu. Aksenova
Stavropol Research Anti-Plague Institute
Russian Federation

13–15, Sovetskaya St., Stavropol, 355035



O. V. Semenova
Stavropol Research Anti-Plague Institute
Russian Federation

13–15, Sovetskaya St., Stavropol, 355035



A. N. Kulichenko
Stavropol Research Anti-Plague Institute
Russian Federation

13–15, Sovetskaya St., Stavropol, 355035



References

1. Rotz L.D., Khan A.S., Lillibridge S.R., Ostroff S.M., Hughes J.M. Public health assessment of potential biological terro¬rism agents. Emerg. Infect. Dis. 2002; 8(2):225–30. DOI: 10.3201/eid0802.010164.

2. Pearson T., Busch J.D., Ravel J., Read T.D., Rhoton S.D., U’Ren J.M., Simonson T.S., Kachur S.M., Leadem R.R., Cardon M.L., Van Ert M.N., Huynh L.Y., Fraser C.M., Keim P. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc. Natl Acad. Sci. USA. 2004; 101(37):13536–41. DOI: 10.1073/pnas.0403844101.

3. Van Ert M.N., Easterday W.R., Huynh L.Y., Okinaka R.T., Hugh-Jones M.E., Ravel J., Zanecki S.R., Pearson T., Simonson T.S., U’Ren J.M., Kachur S.M., Leadem-Dougherty R.R., Rhoton S.D., Zinser G., Farlow J., Coker P.R., Smith K.L., Wang B., Kenefic L.J., Fraser-Liggett C.M., Wagner D.M., Keim P. Global genetic population structure of Bacillus anthracis. PLoS One. 2007; 2(5):e461. DOI: 10.1371/journal.pone.0000461.

4. Sahl J.W., Pearson T., Okinaka R., Schupp J.M., Gillece J.D., Heaton H., Birdsell D., Hepp C., Fofanov V., Noseda R., Fasanella A., Hoffmaster A., Wagner D.M., Keim P. A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens. mBio. 2016; 7(5):e01501-16. DOI: 10.1128/mBio.01501-16.

5. Bruce S.A., Schiraldi N.J., Kamath P.L., Easterday W.R., Turner W.C. A classification framework for Bacillus anthracis defined by global genomic structure. Evol. Appl. 2020; 13(5):935–44. DOI: 10.1111/eva.12911.

6. Pilo P., Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infect. Genet. Evol. 2018; 64:115– 25. DOI: 10.1016/j.meegid.2018.06.024.

7. Leendertz F.H., Ellerbrok H., Boesch C., Couacy-Hymann E., Mätz-Rensing K., Hakenbeck R., Bergmann C., Abaza P., Junglen S., Moebius Y., Vigilant L., Formenty P., Pauli G. Anthrax kills wild chimpanzees in a tropical rainforest. Nature. 2004; 430(6998):451–2. DOI: 10.1038/nature02722.

8. Klee S.R., Brzuszkiewicz E.B., Nattermann H., Brüggemann H., Dupke S., Wollherr A., Franz T., Pauli G., Appel B., Liebl W., Couacy-Hymann E., Boesch C., Meyer F.D., Leendertz F.H., Ellerbrok H., Gottschalk G., Grunow R., Liesegang H. The genome of a bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One. 2010; 5(7):e10986. DOI: 10.1371/journal.pone.0010986.

9. Smith K.L., DeVos V., Bryden H., Price L.B., Hugh-Jones M.E., Keim P. Bacillus anthracis diversity in Kruger National Park. J. Clin. Microb. 2000; 38(10):3780–4. DOI: 10.1128/JCM.38.10.3780-3784.2000.

10. Kassen R., Llewellyn M., Rainey P.B. Ecological constraints on diversification in a model adaptive radiation. Nature. 2004; 431(7011):984–8. DOI: 10.1038/nature02923.

11. Eremenko E.I., Pechkovsky G.A., Ryazanova A.G., Pisarenko S.V., Kovalev D.A., Aksenova L.Yu., Semenova O.V., Kulichenko A.N. [In silico analysis of genomes of Bacillus anthracis strains belonging to major genetic lineages]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 2023; 100(3):155–65. DOI: 10.36233/0372-9311-385.

12. Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 1993; 57(1):1–33. DOI: 10.1128/mr.57.1.1-33.1993.

13. Hoch J.A., Silhavy T.J., editors. Two-Component Signal Transduction. Washington, DC: American Society for Microbiology Press; 1995.

14. Stephenson K., Hoch J.A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 2002; 46(2):297–304. DOI: 10.1046/j.1365-2958.2002.03186.x.

15. Brunsing R.L., La Clair C., Tang S., Chiang C., Hancock L.E., Perego M., Hoch J.A. Characterization of sporulation histidine kinases of Bacillus anthracis. J. Bacteriol. 2005; 187(20):6972–81. DOI: 10.1128/JB.187.20.6972-6981.2005.

16. Sastalla I., Rosovitz M.J., Leppla S.H. Accidental selection and intentional restoration of sporulation-deficient Bacillus anthracis mutants. Appl. Environ. Microbiol. 2010; 76(18):6318–21. DOI: 10.1128/AEM.00950-10.

17. Strauch M., Webb V., Spiegelman G., Hoch J.A. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl Acad. Sci. USA. 1990; 87(5):1801–5. DOI: 10.1073/pnas.87.5.1801.


Review

For citations:


Eremenko E.I., Ryazanova A.G., Pechkovsky G.A., Pisarenko S.V., Kovalev D.A., Aksenova L.Yu., Semenova O.V., Kulichenko A.N. Features of Sporulation of the Main Genetic Lines of Bacillus anthracis. Problems of Particularly Dangerous Infections. 2024;(2):76-82. (In Russ.) https://doi.org/10.21055/0370-1069-2024-2-76-82

Views: 289


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)