Preview

Problems of Particularly Dangerous Infections

Advanced search

Identification of Immunological Correlates of Protection during Development of Specific Immunity to Francisella tularensis

https://doi.org/10.21055/0370-1069-2024-3-15-24

Abstract

Live tularemia vaccine is one of the most effective bacterial vaccines. However, it also has high residual virulence for laboratory animals and may cause adverse reactions in individuals with compromised immune systems. The development of a safe and effective tularemia vaccine is impeded by insufficient understanding of the protection correlates. The aim of this work is to review the literature on the development of post-vaccinal immune responses to live tularemia vaccines and recombinant vaccine candidate strains and to determine the immunological correlates of protection in the formation of specific immunity to Francisella tularensis. This review describes the main aspects of the development of innate and adaptive immune responses to the administration of live tularemia vaccines based on attenuated strains of F. tularensis 15 NIIEG and F. tularensis LVS in humans and in experimental tularemia infection in a mouse model. Studying the mechanisms of adaptive immunity and identifying immunological correlates of protection in experimental tularemia in a murine model is crucial for researching new vaccine strains and improving laboratory methods for assessing the T-cell component of immunity. The main focus is on the study of cellular mechanisms underlying the formation of protective immunity in experimental tularemia, the determination of immunological criteria for its evaluation and the role of identified indicators in long-term protection after the end of the active phase of the immune response induced by immunization with vaccines based on attenuated F. tularensis strains. We discuss the effects of vaccination on the differentiation, functional activity, and duration of specific central and effector CD4+ and CD8+ memory T-cells circulation in humans and mice.

About the Authors

A. S. Kartseva
State Research Center for Applied Microbiology and Biotechnology
Russian Federation

24, “Block A” Territory, Obolensk, urban district Serpukhov, Moscow Region, 142279, Russian Federation



M. V. Silkina
State Research Center for Applied Microbiology and Biotechnology
Russian Federation

24, “Block A” Territory, Obolensk, urban district Serpukhov, Moscow Region, 142279, Russian Federation



T. A. Ivashchenko
State Research Center for Applied Microbiology and Biotechnology
Russian Federation

24, “Block A” Territory, Obolensk, urban district Serpukhov, Moscow Region, 142279, Russian Federation



Ya. O. Romanenko
State Research Center for Applied Microbiology and Biotechnology
Russian Federation

24, “Block A” Territory, Obolensk, urban district Serpukhov, Moscow Region, 142279, Russian Federation



L. V. Sayapina
Scientific Center on Expertise of Medical Application Products
Russian Federation

Building 2, 8, Petrovsky Boulevard, Moscow, 127051, Russian Federation 



V. V. Firstova
State Research Center for Applied Microbiology and Biotechnology
Russian Federation

24, “Block A” Territory, Obolensk, urban district Serpukhov, Moscow Region, 142279, Russian Federation



References

1. Kudryavtseva T.Yu., Popov V.P., Mokrievich A.N., Kulikalova E.S., Kholin A.V., Mazepa А.V., Trankvilevsky D.V., Khramov M.V., Dyatlov I.A. [Genetic diversity of the family Francisellaceae, analysis of the situation on tularemia incidence in the Russian Federation in 2021, and forecast for 2022]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2022; (1):6–14. DOI: 10.21055/0370-1069-2022-1-6-14.

2. Roberts L.M., Powell D.A., Frelinger J.A. Adaptive immunity to Francisella tularensis and considerations for vaccine development. Front. Cell. Infect. Microbiol. 2018; 8:115. DOI: 10.3389/fcimb.2018.00115.

3. Jia Q., Horwitz M.A. Live attenuated tularemia vaccines for protection against respiratory challenge with virulent F. tularensis subsp. tularensis. Front. Cell. Infect. Microbiol. 2018; 8:154. DOI: 10.3389/fcimb.2018.00154.

4. Eneslätt K., Normark M., Björk R., Rietz C., Zingmark C., Wolfraim L.A., Stöven S., Sjöstedt A. Signatures of T cells as correlates of immunity to Francisella tularensis. PloS One. 2012; 7(3): e32367. DOI: 10.1371/journal.pone.0032367.

5. Nicol M.J., Williamson D.R., Place D.E., Kirimanjeswara G.S. Differential immune response following intranasal and intradermal infection with Francisella tularensis implications for vaccine development. Microorganisms. 2021; 9(5):973. DOI: 10.3390/microorganisms9050973.

6. Salerno-Gonçalves R., Hepburn M.J., Bavari S., Sztein M.B. Generation of heterogeneous memory T cells by live attenuated tularemia vaccine in humans. Vaccine. 2009; 28(1):195–206. DOI: 10.1016/j.vaccine.2009.09.100.

7. Seder R.A., Darrah P.A., Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 2008; 8(4):247–58. DOI: 10.1038/nri2274.

8. Kubelkova K., Macela A. Innate immune recognition: an issue more complex than expected. Front. Cell. Infect. Microbiol. 2019; 9:241. DOI: 10.3389/fcimb.2019.00241.

9. Krocova Z., Macela A., Kubelkova K. Innate immune recognition: implications for the interaction of Francisella tularensis with the host immune system. Front. Cell. Infect. Microbiol. 2017; 7:446. DOI: 10.3389/fcimb.2017.00446.

10. Ashtekar A.R., Zhang P., Katz J., Deivanayagam C.C., Rallabhandi P., Vogel S.N., Michalek S.M. TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J. Leukoc. Biol. 2008; 84(6):1434–46. DOI: 10.1189/jlb.0308215.

11. Malik M., Bakshi C.S., Sahay B., Shah A., Lotz S.A., Sellati T.J. Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis. Infect. Immun. 2006; 74(6):3657–62. DOI: 10.1128/IAI.02030-05.

12. Geier H., Celli J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect. Immun. 2011; 79(6):2204–14. DOI: 10.1128/IAI.01382-10.

13. Clay C.D., Soni S., Gunn J.S., Schlesinger L.S. Evasion of complement-mediated lysis and complement C3 deposition are regulated by Francisella tularensis lipopolysaccharide O antigen. J. Immun. 2008; 181(8):5568–78. DOI: 10.4049/jimmunol.181.8.5568.

14. Chong A., Wehrly T.D., Nair V., Fischer E.R., Barker J.R., Klose K.E., Celli J. The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect. Immun. 2008; 76(12):5488–99. DOI: 10.1128/IAI.00682-08.

15. Bönquist L., Lindgren H., Golovliov I., Guina T., Sjöstedt A. MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect. Immun. 2008; 76(8):3502–10. DOI: 10.1128/IAI.00226-08.

16. Lai X.H., Sjöstedt A. Delineation of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect. Immun. 2003; 71(8):4642–6. DOI: 10.1128/IAI.71.8.4642-4646.2003

17. Wickstrum J.R., Bokhari S.M., Fischer J.L., Pinson D.M., Yeh H.W., Horvat R.T., Parmely M.J. Francisella tularensis induces extensive caspase-3 activation and apoptotic cell death in the tissues of infected mice. Infect. Immun. 2009; 77(11):4827–36. DOI: 10.1128/IAI.00246-09.

18. Edwards J.A., Rockx-Brouwer D., Nair V., Celli J. Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFNgamma activation of macrophages. Microbiology (Reading). 2010; 156(Pt. 2):327–39. DOI: 10.1099/mic.0.031716-0.

19. Lindgren H., Stenman L., Tärnvik A., Sjöstedt A. The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages. Microbes Infect. 2005; 7(3):467–75. DOI: 10.1016/j.micinf.2004.11.020.

20. Lindgren H., Shen H., Zingmark C., Golovliov I., Conlan W., Sjöstedt A. Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect. Immun. 2007; 75(3):1303–9. DOI: 10.1128/IAI.01717-06.

21. Woolard M.D., Hensley L.L., Kawula T.H., Frelinger J.A. Respiratory Francisella tularensis live vaccine strain infection induces Th17 cells and prostaglandin E2, which inhibits generation of gamma interferon-positive T cells. Infect. Immun. 2008; 76(6):2651–9. DOI: 10.1128/IAI.01412-07.

22. McCaffrey R.L., Allen L.A. Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J. Leukoc. Biol. 2006; 80(6):1224–30. DOI: 10.1189/jlb.0406287.

23. Conlan J.W., KuoLee R., Shen H., Webb A. Different host defences are required to protect mice from primary systemic vs pulmonary infection with the facultative intracellular bacterial pathogen, Francisella tularensis LVS. Microb. Pathog. 2012; 32(3):127–34. DOI: 10.1006/mpat.2001.0489.

24. Guo Y., Sun X., Shibata K., Yamada H., Muta H., Podack E.R, Yoshikai Y. CD30 is required for activation of a unique subset of interleukin-17A-producing γδ T cells in innate immunity against Mycobacterium bovis Bacillus Calmette-Guerin infection. Infect. Immun. 2013; 81(10):3923–34. DOI: 10.1128/IAI.00887-13.

25. Keating S.M., Bejon P., Berthoud T., Vuola J.M., Todryk S., Webster D.P., Dunachie S.J., Moorthy V.S., McConkey S.J., Gilbert S.C., Hill A.V. Durable human memory T cells quantifiable by cultured enzyme-linked immunospot assays are induced by heterologous prime boost immunization and correlate with protection against malaria. J. Immunol. 2005; 175(9):5675–80. DOI: 10.4049/jimmunol.175.9.5675.

26. Bokhari S.M., Kim K.J., Pinson D.M., Slusser J., Yeh H.W., Parmely M.J. NK cells and gamma interferon coordinate the formation and function of hepatic granulomas in mice infected with the Francisella tularensis live vaccine strain. Infect. Immune. 2008; 76(4):1379–89. DOI: 10.1128/IAI.00745-07.

27. Kirimanjeswara G.S., Olmos S., Bakshi C.S., Metzger D.W. Humoral and cell-mediated immunity to the intracellular pathogen Francisella tularensis. Immunol. Rev. 2008; 225:244–55. DOI: 10.1111/j.1600-065X.2008.00689.x.

28. Kinkead L.C., Allen L.A. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol. Rev. 2016; 273(1):266–81. DOI: 10.1111/imr.12445.

29. Klimpel G.R., Eaves-Pyles T., Moen S.T., Taormina J., Peterson J.W., Chopra A.K., Niesel D.W., Carness P., Haithcoat J.L., Kirtley M., Nasr A.B. Levofloxacin rescues mice from lethal intranasal infections with virulent Francisella tularensis and induces immunity and production of protective antibody. Vaccine. 2008; 26(52):6874–82. DOI: 10.1016/j.vaccine.2008.09.077.

30. Sanapala S., Yu J.J., Murthy A.K., Li W., Guentzel M.N., Chambers J.P., Klose K.E., Arulanandam B.P. Perforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida ΔfopC vaccine strain. Infect. Immun. 2012; 80(6):2177–85. DOI: 10.1128/IAI.00036-12.

31. Culkin S.J., Rhinehart-Jones T., Elkins K.L. A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol. 1997; 158(7): 3277–84.

32. Crane D.D., Warner S.L., Bosio C.M. A novel role for plasmin-mediated degradation of opsonizing antibody in the evasion of host immunity by virulent, but not attenuated, Francisella tularensis. J. Immunol. 2009; 183(7):4593–600. DOI: 10.4049/jimmunol.0901655.

33. Wayne Conlan J., Shen H., Kuolee R., Zhao X., Chen W. Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an alphabeta T cell- and interferon gamma-dependent mechanism. Vaccine. 2005; 23(19):2477–85. DOI: 10.1016/j.vaccine.2004.10.034.

34. Lavine C.L., Clinton S.R., Angelova-Fischer I., Marion T.N., Bina X.R., Bina J.E., Whitt M.A., Miller M.A. Immunization with heat-killed Francisella tularensis LVS elicits protective antibody-mediated immunity. Eur. J. Immunol. 2007; 37(11):3007–20. DOI: 10.1002/eji.200737620.

35. Rawool D.B., Bitsaktsis C., Li Y., Gosselin D.R., Lin Y., Kurkure N.V., Metzger D.W., Gosselin E.J. Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis. J. Immunol. 2008; 180(8):5548–57. DOI: 10.4049/jimmunol.180.8.5548.

36. Elkins K.L., Bosio C.M., Rhinehart-Jones T.R. Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium Francisella tularensis live vaccine strain. Infect. Immun. 1999; 67(11):6002–7. DOI: 10.1128/IAI.67.11.6002-6007.1999.

37. Vega-Ramos J., Alari-Pahissa E., Valle J.D., Carrasco-Marín E., Esplugues E., Borràs M., Martínez-A C., Lauzurica P. CD69 limits early inflammatory diseases associated with immune response to Listeria monocytogenes infection. Immunol. Cell Biol. 2010; 88(7):707–15. DOI: 10.1038/icb.2010.62.

38. Kartseva A.S., Kalmantaeva O.V., Silkina M.V., Kombarova T.I., Pavlov V.M., Mokrievich A.N., Firstova V.V. [Characterization of immunogenic and protective properties of the modified variants of the strain Francisella tularensis 15 NIIEG]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (3):62–9. DOI: 10.21055/0370-1069-2020-3-62-69.

39. Amu S., Gjertsson I., Brisslert M. Functional characterization of murine CD25 expressing B cells. Scand. J. Immunol. 2010; 71(4):275–82. DOI: 10.1111/j.1365-3083.2010.02380.x.

40. Crane D.D., Scott D.P., Bosio C.M. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia. PloS One. 2012; 7(3):e33349. DOI: 10.1371/journal.pone.0033349.

41. Vascotto F., Le Roux D., Lankar D., Faure-André G., Vargas P., Guermonprez P., Lennon-Duménil A.M. Antigen presentation by B lymphocytes: how receptor signaling directs membrane trafficking. Curr. Opin. Immunol. 2007; 19(1):93–8. DOI: 10.1016/j.coi.2006.11.011.

42. Poquet Y., Kroca M., Halary F., Stenmark S., Peyrat M.A., Bonneville M., Fournié J.J., Sjöstedt A. Expansion of Vgamma9Vdelta2 T cells is triggered by Francisella tularensis-derived phosphoantigens in tularemia but not after tularemia vaccination. Infect. Immun. 1998; 66(5):2107–14. DOI: 10.1128/IAI.66.5.2107-2114.1998.

43. Rowland C.A., Hartley M.G., Flick-Smith H., Laws T.R., Eyles J.E., Oyston P.C. Peripheral human γδ T cells control growth of both avirulent and highly virulent strains of Francisella tularensis in vitro. Microbes Infect. 2012; 14(7-8):584–9. DOI: 10.1016/j.micinf.2012.02.001.

44. Meierovics A., Yankelevich W.J., Cowley S.C. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc. Natl Acad. Sci. USA. 2013; 110(33):E3119–28. DOI: 10.1073/pnas.1302799110.

45. Meierovics A.I., Cowley S.C. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. J. Exp. Med. 2016; 213(12):2793–809. DOI: 10.1084/jem.20160637.

46. Bar-On L., Cohen H., Elia U., Rotem S., Bercovich-Kinori A., Bar-Haim E., Chitlaru T., Cohen O. Protection of vaccinated mice against pneumonic tularemia is associated with an early memory sentinel-response in the lung. Vaccine. 2017; 35(50):7001–9. DOI: 10.1016/j.vaccine.2017.10.053.

47. Anderson R.V., Crane D.D., Bosio C.M. Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine. 2010; 28(40):6562–72. DOI: 10.1016/j.vaccine.2010.07.072.

48. Kartseva A.S., Silkina M.V., Titareva G.M., Vakhrameeva G.M., Kombarova T.I., Mironova R.I., Pavlov V.M., Mokrievich A.N., Firstova V.V. [Effect of vaccination with strain of Francisella tularensis 15 NIIEG and its derivatives on the generation and functional activity of memory T-cells in mice]. Biotekhnologiya [Biotechnology]. 2022; 38(3):49–61. DOI: 10.56304/S0234275822030024.

49. Kartseva A.S., Silkina M.V., Titareva G.M., Kombarova T.I., Mironova R.I., Firstova V.V. [Evaluation of the long-term memory T cell in mice after immunization with a live tularemia vaccine]. Meditsinskaya Immunologiya [Medical Immunology (Russia)]. 2023; 25(3):673–8. DOI: 10.15789/1563-0625-EOT-2746.

50. Henao-Tamayo M.I., Ordway D.J., Irwin S.M., Shang S., Shanley C., Orme I.M. Phenotypic definition of effector and memory T-lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin. Vaccine Immunol. 2010; 17(4):618–25. DOI: 10.1128/CVI.00368-09.

51. Ericsson M., Sandström G., Sjöstedt A., Tärnvik A. Persistence of cell-mediated immunity and decline of humoral immunity to the intracellular bacterium Francisella tularensis 25 years after natural infection. J. Infect. Dis. 1994; 170(1):110–4. DOI: 10.1093/infdis/170.1.110.

52. Roberts L.M., Davies J.S., Sempowski G.D., Frelinger J.A. IFN-γ, but not IL-17A, is required for survival during secondary pulmonary Francisella tularensis live vaccine stain infection. Vaccine. 2014; 32(29):3595–603. DOI: 10.1016/j.vaccine.2014.05.013.

53. Cowley S.C., Meierovics A.I., Frelinger J.A., Iwakura Y., Elkins K.L. Lung CD4-CD8- double-negative T cells are prominent producers of IL-17A and IFN-gamma during primary respiratory murine infection with Francisella tularensis live vaccine strain. 2010; 184(10):5791–801. DOI: 10.4049/jimmunol.1000362.

54. Abel B., Tameris M., Mansoor N., Gelderbloem S., Hughes J., Abrahams D., Makhethe L., Erasmus M., de Kock M., van der Merwe L., Hawkridge A., Veldsman A., Hatherill M., Schirru G., Pau M.G., Hendriks J., Weverling G.J., Goudsmit J., Sizemore D., McClain J.B., Goetz M., Gearhart J., Mahomed H., Hussey G.D., Sadoff J.C., Hanekom W.A. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respire. Crit. Care Med. 2010; 181(12):1407–17. DOI: 10.1164/rccm.200910-1484OC.

55. Seder R.A., Hill A.V. Vaccines against intracellular infections requiring cellular immunity. Nature. 2000; 406(6797):793–8. DOI: 10.1038/35021239.


Review

For citations:


Kartseva A.S., Silkina M.V., Ivashchenko T.A., Romanenko Ya.O., Sayapina L.V., Firstova V.V. Identification of Immunological Correlates of Protection during Development of Specific Immunity to Francisella tularensis. Problems of Particularly Dangerous Infections. 2024;(3):15-24. (In Russ.) https://doi.org/10.21055/0370-1069-2024-3-15-24

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)