Peculiarities of Vesiculation in Virulent and Avirulent LPS-Defective Strains of Francisella tularensis of Various Subspecies
https://doi.org/10.21055/0370-1069-2024-3-74-80
Abstract
The aim of the study was to compare outer membrane vesicles (OMVs) and their composition in virulent and avirulent (LPS-defective) strains of Fracisella tularensis of various subspecies. Materials and methods. The vesiculation process in F. tularensis bacteria was studied using transmission electron microscopy. OMVs preparations were obtained and characterized by their composition using immunological methods: antibody neutralization test, immunochromatographic analysis, dot and immunoblotting. Results and discussion. It has been found that all natural virulent strains with the S type lipopolysaccharide (LPS) are able to produce two forms of vesicles – spherical and tubular (“tubes”), specific for F. tularensis. OMVs formation has not been registered in avirulent LPS-defective strains. It is revealed that vesicles of strains of various subspecies show their own individual morphological features. The tubes of F. tularensis subsp. mediasiatica are larger in size as compared to those of the subsp. holarctica strain. This is probably the reason why vesicle preparations from F. tularensis subsp. mediasiatica obtained using filters with a diameter of pores being 0.22 μm contained a significantly reduced number of tubular forms. A method of disinfection of bacterial suspensions using gentamycine, which does not affect the morphology and antigenic activity of vesicles, is proposed. A comparative study of several series of concentrated OMVs preparations obtained from different strains has revealed that all samples had antigenic activity in the precipitation Ouchterlony test, antibody neutralization test, immunochromatografic assay, dot-blot and immunoblotting. Immunodominant antigen – LPS and several major antigenic proteins have been detected in the preparations. Differences in the composition of vesicle proteins in the strains of various F. tularensis subspecies have been identified.
About the Authors
N. V. AronovaRussian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
N. V. Pavlovich
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
M. G. Meloyan
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
M. V. Tsimbalistova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
A. K. Noskov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
References
1. Kuehn M.J., Kesty N.C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes. Dev. 2005; 19(22):2645–55. DOI: 10.1101/gad.1299905.
2. Kulp A., Kuehn M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010; 64:163–84. DOI: 10.1146/annurev.micro.091208.073413.
3. Schwechheimer C., Kuehn M.J. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 2015; 13(10):605–19. DOI: 10.1038/nrmicro3525.
4. Malkova M.A., Dudina L.G., Devrishov D.A., Byvalov A.A. [Vesicle formation in gram-negative bacteria (literature review)]. Advanced Science. 2017; (4):3.
5. Lusta K.A. [Bacterial outer membrane nanovesicles: structure, biogenesis, functions, use in biotechnology and medicine (review)]. Prikladnaya Biokhimiya i Mikrobiologiya [Applied Biochemistry and Microbiology]. 2015; 51(5):443–52. DOI: 10.7868/S0555109915040091.
6. Ellis T.N., Kuehn M.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 2010; 74(1):81–94. DOI: 10.1128/MMBR.00031-09.
7. Schooling S.R., Beveridge T.J. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 2006; 188(16):5945–57. DOI: 10.1128/JB.00257-06.
8. Lee E.Y., Choi D.S., Kim K.P., Gho Y.S. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev. 2008; 27(6):535–55. DOI: 10.1002/mas.20175.
9. Yoon H. Bacterial outer membrane vesicles as a delivery system for virulence regulation. J. Microbiol. Biotechnol. 2016; 26(8):1343–7. DOI: 10.4014/jmb.1604.04080.
10. Wang S., Gao J., Wang Z. Outer membrane vesicles for vaccination and targeted drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019; 11(2):e1523. DOI: 10.1002/wnan.1523.
11. Pizza M., Bekkat-Berkani R., Rappuoli R. Vaccines against meningococcal diseases. Microorganisms. 2020; 8(10):1521. DOI: 10.3390/microorganisms8101521.
12. Spidlova P., Stojkova P., Sjöstedt A., Stulik J. Control of Francisella tularensis virulence at gene level: network of transcription factors. Microorganisms. 2020; 8(10):1622. DOI: 10.3390/microorganisms8101622.
13. Jones B.D., Faron M., Rasmussen J.A., Fletcher J.R. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front. Cell. Infect. Microbiol. 2014; 4:32. DOI: 10.3389/fcimb.2014.00032.
14. Rowe H.M., Huntley J.F. From the outside-in: The Francisella tularensis envelope and virulence. Front. Cell. Infect. Microbiol. 2015; 5:94. DOI: 10.3389/fcimb.2015.00094.
15. Ellis J., Oyston C.F., Green M., Titball R.W. Tularemia. Clin. Microbiol. Rev. 2002; 15(4):631–46. DOI: 10.1128/CMR.15.4.631-646.2002.
16. Aronova N.V., Pavlovich N.V. [Comparative analysis of the rabbit’s immune response to antigens of live and killed bacteria of the genus Francisella]. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 2001; (2):26–30.
17. Sandström G., Sjöstedt A., Johansson T., Kuoppa K., Williams J.C. Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol. Immunol. 1992; 5(4):201–10. DOI: 10.1111/j.1574-6968.1992.tb05902.x.
18. Onoprienko N.N., Pavlovich N.V. [The role of lipopolysaccharide in the toxicity of bacteria of the genus Francisella]. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 2003; (3):23–9.
19. Pierson T., Matrakas D., Taylor Y.U., Manyam G., Morozov V.N., Zhou W., van Hoek M.L. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 2011; 10(3):954–67. DOI: 10.1021/pr1009756.
20. McCaig W.D., Koller А., Thanassi D.G. Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 2013; 195(6):1120–32. DOI: 10.1128/JB.02007-12.
21. Chen F., Cui G., Wang S., Nair M.K.M., He L., Qi X., Han X., Zhang H., Zhang J.R., Su J. Outer membrane vesicleassociated lipase FtlA enhances cellular invasion and virulence in Francisella tularensis LVS. Emerg. Microbes Infect. 2017; 6(7):е66. DOI: 10.1038/emi.2017.53.
22. Champion A.E., Bandara A.B., Mohapatra N., Fulton K.M., Twine S.M., Inzana T.J. Further characterization of the capsule-like complex (CLC) produced by Francisella tularensis subspecies tularensis: protective efficacy and similarity to outer membrane vesicles. Front. Cell. Infect. Microbiol. 2018; 8:182. DOI: 10.3389/fcimb.2018.00182.
23. Sampath V., McCaig W.D., Thanassi D.G. Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol. Microbiol. 2018; 107(4):523–41. DOI: 10.1111/mmi.13897.
24. Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofronova O., Benada O., Stulik J. Francisella tularensis subsp. Holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 2019; 10:2304. DOI: 10.3389/fmicb.2019.02304.
25. Klimentova J., Rehulka P., Pavkova I., Kubelkova K., Bavlovic J., Stulik J. Cross-species proteomic comparison of outer membrane vesicles and membranes of Francisella tularensis subsp. tularensis versus subsp. holarctica. J. Proteome Res. 2021; 20(3):1716–32. DOI: 10.1021/acs.jproteome.0c00917.
26. Pavkova I., Klimentova J., Bavlovic J., Horcickova L., Kubelkova K., Vlcak E., Raabova H., Filimonenko V., Ballek O., Stulik J. Francisella tularensis outer membrane vesicles participate in the early phase of interaction with macrophages. Front. Microbiol. 2021; 12:748706. DOI: 10.3389/fmicb.2021.748706.
27. Brudal E., Lampe E.O., Reubsaet L., Roos N., Hegna I.K., Thrane I.M., Koppang E.O., Winther-Larsen H.C. Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. Fish Shellfish Immunol. 2015; 42(1):50–7. DOI: 10.1016/j.fsi.2014.10.025.
28. Lagos L., Tandberg J.I., Repnik U., Boysen P., Ropstad E., Varkey D., Paulsen I.T., Winther-Larsen H.C. Characterization and vaccine potential of membrane vesicles produced by Francisella noatunensis subsp. orientalis in an adult zebrafish model. Clin. Vaccine Immunol. 2017; 24(5):e00557-16. DOI: 10.1128/CVI.00557-16.
29. Stevenson T.C., Cywes-Bentley C., Moeller T.D., Weyant K.B., Putnam D., Chang Y.F., Jones B.D., Pier G.B., DeLisa M.P. Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc. Natl Acad. Sci. USA. 2018; 115(14):E3106-E3115. DOI: 10.1073/pnas.1718341115.
30. Towbin H., Gordon J. Immunoblotting and dot immunobinding – current status and outlook. J. Immunol. Methods. 1984; 72(2):313–40. DOI: 10.1016/0022-1759(84)90001-2.
31. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680–5. DOI: 10.1038/227680a0.
32. Bavlovic J., Pavkova I., Balonova L., Benada O., Stulik J., Klimentova J. Intact O-antigen is critical structure for the exceptional tubular shape of outer membrane vesicles in Francisella tularensis. Microbiol. Res. 2023; 269:127300. DOI: 10.1016/j.micres.2023.127300.
Review
For citations:
Aronova N.V., Pavlovich N.V., Meloyan M.G., Tsimbalistova M.V., Noskov A.K. Peculiarities of Vesiculation in Virulent and Avirulent LPS-Defective Strains of Francisella tularensis of Various Subspecies. Problems of Particularly Dangerous Infections. 2024;(3):74-80. (In Russ.) https://doi.org/10.21055/0370-1069-2024-3-74-80