Genetic Diversity and Phylogenetic Relatedness of R-Variant штаммов Vibrio cholerae Strains
https://doi.org/10.21055/0370-1069-2024-3-144-153
Abstract
Cholera vibrios, isolated from surface water bodies during monitoring activities, can differ from typical ones in terms of agglutinability with diagnostic cholera sera, which makes it difficult to assign them to a specific serogroup. Therefore, the determination of the causes for these deviations through the study of the structure of genetic determinants responsible for the synthesis of O‑antigen (wb* clusters) is considered a relevant task. The aim of this work was to identify wb* clusters in the genomes of R-variant Vibrio cholerae, study their structure, and conduct phylogenetic analysis of the strains. Materials and methods. Full genome sequencing was performed using Illumina MiSeq and MinION platforms. The assembly was conducted de novo using the SPAdes assembler software (v.3.11.1). Manipulation of cluster sequences and data visualization were carried out using the BLAST program from the ncbi-blast-suite package version 2.13.0, Python scripts and packages such as pyGenomeViz and Biopython. The phylogenetic tree was constructed using the roary program (v.3.13.0). Full genome alignment was carried out using the nucmer and promer programs from the MUMmer 4 package version 4.0. Results and discussion. R-variant V. cholerae contains different types of wb* clusters in the genome, with most commonly occurring O23 and O59. A comparison has been made between translated amino acid sequences of wb* regions in R-variant strains and amino acid sequences of reference strains present in the NCBI database. Some of the analyzed clusters completely match with reference strains, while others show high variability. Phylogenetically, the strains primarily group together according to the wb* cluster type, regardless of the S/R phenotype. Classifying R-variant V. cholerae strains based on agglutinability is challenging. Molecular research methods, polymerase chain reaction, in particular, are necessary to determine the pathogenic potential of such strains.
About the Authors
O. A. PodoinitsynaRussian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
L. V. Mironova
Russian Federation
78, Trilissera St., Irkutsk, 664047, Russian Federation
V. D. Kruglikov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
I. S. Fedotova
Russian Federation
78, Trilissera St., Irkutsk, 664047, Russian Federation
Yu. P. Galach’yants
Russian Federation
78, Trilissera St., Irkutsk, 664047, Russian Federation
A. S. Vodop’yanov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
D. A. Levchenko
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
S. Yu. Temyakova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
E. A. Basov
Russian Federation
78, Trilissera St., Irkutsk, 664047, Russian Federation
A. S. Ponomareva
Russian Federation
78, Trilissera St., Irkutsk, 664047, Russian Federation
A. K. Noskov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002, Russian Federation
References
1. Levchenko D.A., Kruglikov V.D., Arkhangel’skaya I.V., Yakusheva O.A., Alekseeva L.P., Vodop’yanov S.O., Ezhova M.I., Noskov A.K. [Assessment of the variation range of agglutinability in Vibrio cholerae strains isolated in the course of monitoring studies]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2022; (3):107–14. DOI: 10.21055/0370-1069-2022-3-107-114.
2. Chatterjee S.N., Chaudhuri K. Lipopolysaccharides of Vibrio cholerae. I. Physical and chemical characterization. Biochim. Biophys. Acta. 2003; 1639(2):65–79. DOI: 10.1016/j.bbadis.2003.08.004.
3. Blokesch M., Schoolnik G.K. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog. 2007; 3(6):e81. DOI: 10.1371/journal.ppat.0030081.
4. Aydanian A., Tang L., Morris J.G., Johnson J.A., Stine O.C. Genetic diversity of O-antigen biosynthesis regions in Vibrio cholerae. Appl. Environ. Microbiol. 2011; 77(7):2247–53. DOI: 10.1128/AEM.01663-10.
5. Xu J., Zhang J., Lu X., Liang W., Zhang L., Kan B. O antigen is the receptor of Vibrio cholerae serogroup O1 El Tor typing phage VP4. J. Bacteriol. 2013; 195(4):798–806. DOI: 10.1128/ JB.01770-12.
6. Li M., Shimada T., Morris J.G. Jr, Sulakvelidze A., Sozhamannan S. Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect. Immun. 2002; 70(5):2441–53. DOI: 10.1128/IAI.70.5.2441-2453.2002.
7. De K., Ramamurthy T., Faruque S.M., Yamasaki S., Takeda Y., Nair G.B., Nandy R.K. Molecular characterisation of rough strains of Vibrio cholerae isolated from diarrhoeal cases in India and their comparison to smooth strains. FEMS Microbiol. Lett. 2004; 232(1):23–30. DOI: 10.1016/S0378-1097(04)00013-8.
8. Alekseeva L.P., Cherepakhina I.Ya., Sal’nikova O.I., Burlakova O.S. [A monoclonal antibody-based study of the antigenic interrelations of typical and R forms of Vibrio cholerae]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 1998; (4):9–12.
9. Mitra R.K., Nandy R.K., Ramamurthy T., Bhattacharya S.K., Yamasaki S., Shimada T., Takeda Y., Nair G.B. Molecular characterisation of rough variants of Vibrio cholerae isolated from hospitalised patients with diarrhoea. J. Med. Microbiol. 2001; 50(3):268–76. DOI: 10.1099/0022-1317-50-3-268.
10. Zadnova S.P., Smirnova N.I. [The Role of Extracellular exopolysaccharide in cholera agent adaptation in the environment]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2010; (3):13–9. DOI: 10.21055/0370-1069-2010-3(105)-13-19.
11. Shimada T., Sakazaki R. R antigen of Vibrio cholerae. Jpn. J. Med. Sci. Biol. 1973; 26(4):155–60. DOI: 10.7883/yoken1952.26.155.
12. Yang X., Liu D., Liu F., Wu J., Zou J., Xiao X., Zhao F., Zhu B. HTQC: a fast quality control toolkit for Illumina sequencing data. BMC Bioinformatics. 2013; 14:33. DOI: 10.1186/1471-2105-14-33.
13. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114–20. DOI: 10.1093/bioinformatics/btu170.
14. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19(5):455–77. DOI: 10.1089/cmb.2012.0021.
15. Gurevich А., Saveliev V., Vyahhi N., Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013; 29(8):1072–5. DOI: 10.1093/bioinformatics/btt086.
16. Slater G.S., Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005; 6:31. DOI: 10.1186/1471-2105-6-31.
17. Zhang Z., Schwartz S., Wagner L., Miller W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000; 7(1-2): 203–14. DOI: 10.1089/10665270050081478.
18. Page A.J., Cummins C.A., Hunt M., Wong V.K., Reuter S., Holden M.T., Fookes M., Falush D., Keane J.A., Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015; 31(22):3691–3. DOI: 10.1093/bioinformatics/btv421.
19. Marçais G., Delcher A.L., Phillippy A.M., Coston R., Salzberg S.L., Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018; 14(1):e1005944. DOI: 10.1371/journal.pcbi.1005944.
Review
For citations:
Podoinitsyna O.A., Mironova L.V., Kruglikov V.D., Fedotova I.S., Galach’yants Yu.P., Vodop’yanov A.S., Levchenko D.A., Temyakova S.Yu., Basov E.A., Ponomareva A.S., Noskov A.K. Genetic Diversity and Phylogenetic Relatedness of R-Variant штаммов Vibrio cholerae Strains. Problems of Particularly Dangerous Infections. 2024;(3):144-153. (In Russ.) https://doi.org/10.21055/0370-1069-2024-3-144-153