Biological and Genetic Characteristics of a New Bacteriophage Isolated from Cholera Vibrios from a Patient (Moscow, 2023)
https://doi.org/10.21055/0370-1069-2024-4-124-130
Abstract
Currently, cholera remains a relevant infectious disease that requires new alternative antimicrobial agents for treatment and prevention, which can be bacteriophages. The aim of the study was to obtain a new bacteriophage from a culture of cholera vibrios isolated from a patient in Moscow in 2023, and characterize its biological and genetic properties. Materials and methods. The toxigenic strain Vibrio cholerae O1 Ogawa 21197 was used in the work. A two-layer agar Grazia method was applied to study biological properties of the bacteriophage (morphology of negative colonies, sensitivity to high and low temperatures and chloroform, lytic activity and specificity). The morphology of phage particles was studied under an electron microscope. The genetic characterization was carried out on the basis of genomewide sequencing using the programs “SeqAnalyzer”, “PhageAnalyzer 2.0”, as well as the algorithms BLASTN 2.2.29 and BLASTX 2.12.0+. Results and discussion. Isolated bacteriophage forms transparent negative colonies with an uneven edge without secondary growth and halo on nutrient media. Electron microscopy revealed that the isolated bacteriophage has a multifaceted head and a short tail. The phage is specific and has high lytic activity against cholera vibrios isolated from humans, is sensitive to heat and resistant to chloroform and freezing. Analysis of the sequencing results has shown that the phage belongs to the Caudoviricetes class of the Zobellviridae family, the genome size is 48,074 bp with a G+C content=42.7 %. The resulting genome was checked for nucleotide sequence homology with DNA sequences of other bacteriophages. 9 Vibrio phage genomes of the Zobellviridae family of the Caudoviricetes class were found, having a high percentage of overlap, isolated out of the water in India.
About the Authors
Yu. V. SizovaRussian Federation
Yulia V. Sizova
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
M. P. Pogozhova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
N. E. Gaevskaya
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
A. V. Tyurina
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
A. S. Vodop’yanov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
References
1. Noskov A.K., Kruglikov V.D., Moskvitina E.A., Mironova L.V., Monakhova E.V., Soboleva E.G., Chemisova O.S., Vodop’yanov A.S., Lopatin A.A., Ivanova S.M., Men’shikova E.A., Podoynitsyna O.A., Ezhova M.I., Evteev A.V. [Cholera: analysis and assessment of the epidemiological situation in the world and Russia. Forecast for 2023]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2023; (1):56–66. DOI: 10.21055/0370-1069-2023-1-56-66.
2. Will an Epidemic Break Out? A Russian Foreign Ministry Pool Journalist Contracted Cholera and Brought It to Moscow. (Cited 03 June 2024). [Internet]. Available from: https://msk1.ru/text/health/2023/09/22/72733892/?ysclid=lt8j7kdcxs532579309.
3. D’Herelle F. [Bacteriophage and the Phenomenon of Recovery]. Tiflis: Publishing house of Tiflis State University; 1935. 262 p.
4. Faruque S.M. Role of phages in the epidemiology of cholera. Curr. Top. Microbiol. Immunol. 2014; 379:165–80. DOI: 10.1007/82_2013_358.
5. Tyurina A.V., Gaevskaya N.E., Pogozhova M.P., Anoprienko A.O. [Aspects of designing experimental prophylac- tic drugs based on cholera bacteriophages]. Vestnik Biotekhnologii i Fiziko-Khimicheskoi Biologii imeni Yu.A. Ovchinnikova [Bulletin of Biotechnology and Physicochemical Biology named after Yu.A. Ovchinnikov]. 2021; 17(3):60–8.
6. Pogozhova M.P., Gaevskaya N.E., Vodop’yanov A.S., Pisanov R.V., Anoprienko A.O., Romanova L.V., Tyurina A.V. [Biological properties and genetic characteristics of experimental diagnostic bacteriophages of Vibrio cholerae]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 2021; 98(3):290–7. DOI: 10.36233/0372-9311-39.
7. Adams M. [Bacteriophages]. Moscow: Publishing House of Foreign Literature; 1961. 527 p.
8. [Rational Use of Bacteriophages in Medical and Anti-Epi demic Practice. Methodological Recommendations]. Moscow; 2014. 32 p.
9. Kudryakova T.A., Evteeva E.I., Makedonova L.D., Sayamov S.R., Dudkina O.V., Smirnova E.V. [Study of biological properties of cholera phages and El Tor vibrio strains isolated from the exter- nal environment of Donetsk]. Gigiena i Sanitariya [Hygiene and Sanitation]. 1993; (12):14–7.
10. Gaevskaya N.E., Kudryakova T.A., Makedonova L.D., Kachkina G.V. [Identification and differentiation of bacteriophages of vibrios pathogenic for humans]. Klinicheskaya Laboratornaya Diagnostika [Clinical Laboratory Diagnostics]. 2015; (4):62–4.
11. Maniatis T., Fritch E., Sambrook J. [Methods of Genetic Engineering: Molecular Cloning]. Translated from English, edited by Baev A.A., Skryabin K.G. Moscow: “Mir”; 1984. 479 p.
12. Andrews S. [FastQC: a quality control tool for high throughput sequence data]. 2010. [Internet]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
13. Вankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19(5):455–77. DOI: 10.1089/cmb.2012.0021.
14. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a fle xible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114–20. DOI: 10.1093/bioinformatics/btu170.
15. Pogozhova M.P., Gaevskaya N.E., Tyurina A.V., Anoprienko A.O. [Creation of a collection of pathogenic vi- brio phages and its use for diagnostic and prophylactic purpo ses]. Vestnik Biotekhnologii i Fiziko-Khimicheskoi Biologii imeni Yu.A. Ovchinnikova [Bulletin of Biotechnology and Physical-Che mical Biology named after Yu.A. Ovchinnikov]. 2023; 19(3):37–45.
16. Seed K.D., Bodi K.L., Kropinski A.M., Ackermann H.W., Calderwood S.B., Qadri F., Camilli A. Evidence of a dominant li neage of Vibrio cholerae-specific lytic bacteriophages shed by cho lera patients over a 10-year period in Dhaka, Bangladesh. mBio. 2011; 2(1):e00334-10. DOI: 10.1128/mBio.00334-10.
17. Seed K.D., Yen M., Shapiro B.J., Hilaire I.J., Charles R.C., Teng J.E., Ivers L.C., Boncy J., Harris J.B., Camilli A. Evolutionary consequences of intra-patient phage predation on microbial popula- tions. Elife. 2014; 3:e03497. DOI: 10.7554/eLife.03497.
18. Rodionov D.A., Vitreschak A.G., Mironov A.A., Gelfand M.S. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J. Biol. Chem. 2003; 278(42):41148–59. DOI: 10.1074/jbc.M305837200.
19. Flayhan A., Wien F., Paternostre M., Boulanger P., Breyton C. New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli re- ceptor FhuA. Biochimie. 2012; 94(9):1982–9. DOI: 10.1016/j.biochi.2012.05.021.
Review
For citations:
Sizova Yu.V., Pogozhova M.P., Gaevskaya N.E., Tyurina A.V., Vodop’yanov A.S. Biological and Genetic Characteristics of a New Bacteriophage Isolated from Cholera Vibrios from a Patient (Moscow, 2023). Problems of Particularly Dangerous Infections. 2024;(4):124-130. (In Russ.) https://doi.org/10.21055/0370-1069-2024-4-124-130