Analysis of Peculiarities of Epidemiological Situation on Cholera in the World and in the Russian Federation in 2024 and Forecast of its Development in 2025
https://doi.org/10.21055/0370-1069-2025-1-35-47
Abstract
The aim of the work was to analyze the peculiarities of the cholera epidemiological situation in the world and in Russia in 2024; forecast for 2025. The results of proactive epidemiological surveillance showed a continued upward trend in cholera morbidity in the world despite of the decrease in this indicator in 2024 (762 830 cases in 42 countries) as compared to 2023 (816 235 in 47 countries). A special feature was the import of a polyantibiotic-resistant Vibrio cholerae O1 El Tor strain from Tanzania to Island Mayotte. Active labor migration to the Russian Federation (RF) from countries with unfavorable cholera situation was noted (11 686 foreigners, 88.17 % – from India). No cholera patients (vibrio carriers) were identified in RF. The features of epidemiological situation have been established: two toxigenic V. cholerae O1 strains similar to the one isolated in 2023, and one toxigenic strain of NAG, documented in RF for the first time, were detected in surface water bodies. It has been determined that the non-toxigenic V. cholerae O1 strain, which caused a case of acute intestinal infection, and waterborne O1 strains circulating in Russia belong to the same clone. For the first time, the non-toxigenic V. cholerae O139 strain was isolated from a patient with acute intestinal infection. An increase in the number of non-toxigenic O1 strains isolated from water bodies was noted (335 in 2024, 52 in 2023), mainly due to the clonal complex (250 strains, Krasnodar Territory) spread through karst waters. Diseases caused by non-toxigenic NAG vibrios V. parahaemolyticus and V. fluvialis, were detected. The forecast for 2025 covers the risks of cholera importation, including cases caused by antibiotic-resistant strains; increase in labor migration from countries with an unfavorable cholera situation; the likelihood of detecting toxigenic O1 and nonO1/nonO139 strains in the environment, an increase in the number of acute intestinal infections caused by non-toxigenic cholera and other pathogenic vibrios; possible detection of extra-intestinal infections, an increase in the number of non-toxigenic V. cholerae O1 in environmental objects. It is advisable to start monitoring studies earlier (April) and finish them later (October) in RF in 2025 in type I territories classed according to epidemic manifestations of cholera.
About the Authors
V. D. KruglikovRussian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
N. E. Gaevskaya
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
E. V. Monakhova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
E. A. Moskvitina
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
V. V. Agafonova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
I. V. Savina
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
O. A. Podoynitsyna
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
N. A. Selyanskaya
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
A. S. Vodop’yanov
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
O. V. Duvanova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
E. A. Men’shikova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
M. I. Ezhova
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
E. S. Shipko
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
A. V. Evteev
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
V. S. Kaz’mina
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
P. V. Bodraya
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
E. N. Sokirkina
Russian Federation
117/40, M. Gor’kogo St., Rostov-on-Don, 344002
References
1. Popova A.Yu., Noskov A.K., Ezhlova E.B., Kruglikov V.D., Monakhova E.V., Chemisova O.S., Lopatin A.A., Ivanova S.M., Podoynitsyna O.A., Vodop’yanov A.S., Levchenko D.A., Savina I.V. [Epidemiological situation on cholera in the Russian Federation in 2023 and forecast for 2024]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2024; (1):76–88. DOI: 10.21055/0370-1069-2024-1-76-88.
2. Ali M., Nelson A.R., Lopez A.L., Sack D.A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 2015; 9(6):e0003832. DOI: 10.1371/journal.pntd.0003832.
3. Cholera, 2015. Wkly Epidem. Rec. WHO. 2016; 91(38):433– 40. [Internet]. Available from: https://iris.who.int/bitstream/handle/10665/250142/WER9138.pdf?sequence=1.
4. Cholera, 2016. Wkly Epidem. Rec. WHO. 2017; 92(36):521– 36. [Internet]. Available from: https://iris.who.int/bitstream/handle/10665/258910/WER9236.pdf?sequence=1.
5. Cholera, 2017. Wkly Epidem. Rec. WHO. 2018; 93(38):489– 97. [Internet]. Available from: https://iris.who.int/bitstream/handle/10665/274654/WER9338.pdf?ua=1.
6. Cholera, 2018. Wkly Epidem. Rec. WHO. 2019; 94(48):561– 80. [Internet]. Available from: https://iris.who.int/bitstream/handle/10665/274654/WER9448.pdf?ua=1.
7. Cholera, 2019. Wkly Epidem. Rec. WHO. 2020; 95(37):441–8. [Internet]. Available from: https://iris.who.int/bitstream/handle/10665/334241/WER9537-eng-fre.pdf?ua=1.
8. Cholera, 2020. Wkly Epidem. Rec. WHO. 2021; 96(37):445– 60. [Internet]. Available from: https://iris.who.int/bitstream/handle/10665/345267/WER9637-eng-fre.pdf.
9. Cholera, 2021. Wkly Epidem. Rec. WHO. 2022; 97(37):453– 64. [Internet]. Available from: http://iris.who.int/bitstream/handle/10665/362852/WER9737-eng-fre.pdf.
10. Cholera, 2022. Wkly Epidem. Rec. WHO. 2023; 98(38):431–52. [Internet]. Available from: http://iris.who.int/bitstream/handle/10665/372986/WER9838-eng-fre.pdf.
11. Cholera, 2023. Wkly Epidem. Rec. WHO. 2024; 98(36):481–94. (Cited 20 Sep 2024). [Internet]. Available from:http://iris.who.int/bitstream/handle/10665/378714/WER9936-engfre.pdf.
12. Data show marked increase in annual cholera deaths. WHO [EN/FR/ZH]. (Cited 06 Sep 2024). [Internet]. Available from: https://www.who.int/news/item/04-09-2024-data-show-marked-increasein-annual-cholera-deaths.
13. Communicable disease threats report, 17–23 December 2023, week 51. [Internet]. Available from: https://www.ecdc.europa. eu/en/publications-data/communicable-disease-threats-report-17-23-december-2023-week-51.
14. PRO/EDR> Cholera, diarrhea & dysentery update (19): Africa (West Africa). WAHOO. Archive Number: 20240512.8716469. (Cited 13 May 2024). [Internet]. Available from: https://promedmail.org/promed-post/?id=8716469.
15. Global Cholera and Acute Watery Diarrhoea (AWD) Dashboard. (Cited 23 Dec 2024). [Internet]. Available from: https://who-global-cholera-and-awd-dashboard-1-who.hub.arcgis.com/.
16. Ng Q.X., De Deyn M.L.Z.Q., Loke W., Yeo W.S. Yemen’s cholera epidemic is a one health issue. J. Prev. Med. Public Health. 2020; 53(4):289–92. DOI: 10.3961/jpmph.20.154.
17. Yemen reports the highest burden of cholera globally [EN/AR]. (Cited 24 Dec 2024). [Internet]. Available from: https://reliefweb.int/report/yemen/yemen-reports-highest-burden-choleraglobally-enar.
18. UNICEF Afghanistan Humanitarian Situation Report. No. 10, 1–31 October 2024. (Cited 21 Nov 2024). [Internet]. Available from: https://reliefweb.int/report/afghanistan/unicef-afghanistanhumanitarian-situation-report-no-10-1-31-october-2024.
19. Africa CDC Weekly Event Based Surveillance Report, December 2024. (Cited 18 Dec 2024). [Internet]. Available from: https://africacdc.org/download/africa-cdc-weekly-event-basedsurveillance-report-december-2024/.
20. Décès communautaires de cas suspects de choléra (ACT_ DES_15092024). (Cited 10 Dec 2024). [Internet]. Available from: https://reliefweb.int/report/haiti/deces-communautaires-de-cassuspects-de-cholera-actdes15092024.
21. Haiti_Factsheet: MSNA Haïti 2024: Artibonite – juillet 2024. (Cited 16 Dec 2024). [Internet]. Available from: https://reliefweb.int/report/haiti/factsheet-msna-haiti-2024-artibonite-juillet-2024.
22. PAHO urges protection of medical facilities and services in Haiti to ensure continued access amid escalating conflict. (Cited 24 Dec 2024). [Internet]. Available from: https://reliefweb.int/report/haiti/paho-urges-protection-medical-facilities-and-services-haitiensure-continued-access-amid-escalating-conflict.
23. Communicable disease threats report. Week 11, 10–16 March 2024. (Cited 18 Mar 2024). [Internet]. Available from: https://www.ecdc.europa.eu/en/publications-data/communicable-diseasethreats-report-10-16-march-2024-week-11.
24. Martins-Filho P.R., Alves Dos Santos C. Potential re-emergence of cholera in Brazil. Lancet Reg. Health. Am. 2024; 34:100767.DOI: 10.1016/j.lana.2024.100767.
25. PRO/PORT> Colera – Brasil (BA), caso confirmado, autóctone, fonte de infecção desconhecida. Archive Number:20240421.8716081. (Cited 22 Apr 2024). [Internet]. Available from:https://promedmail.org/promed-post/?id=8716081.
26. Yanovich E.G., Moskvitina E.A. [Epidemiological risks: importance when zoning administrative territories and activating epidemic process during infectious diseases]. Epidemiologiya i Vaktsinoprofilaktika [Epidemiology and Vaccinal Prevention]. 2019; 18(6):81–9. DOI:10.31631/2073-3046-2019-18-6-81-89.
27. PRO/EDR> Cholera, diarrhea & dysentery update (18): France (MT) fatal. Archive Number: 20240512.8716458. (Cited 13 May 2024). [Internet]. Available from: https://promedmail.org/promed-post/?id=8716458.
28. Gazeta.ru: [A strain of cholera, resistant to 10 antibiotics, has been detected]. (Cited 17 Dec 2024). [Internet]. Available from: https://www.gazeta.ru/science/news/2024/12/17/24644546.shtml
29. Rouard C., Collet L., Njamkepo E., Jenkin C., Sacheli R., Benoit-Cattin T., Figoni J., Weill F.-X. Long-distance spread of a highly drug-resistant epidemic cholera. N. Engl. J. Med. 2024; 391(23):2271–3. DOI: 10.1056/NEJMc2408761.
30. Lassalle F., Al-Shalali S., Al-Hakimi M., Njamkepo E., Bashir I.M., Dorman M.J., Rauzier J., Blackwell G.A., Taylor-Brown A., Beale M.A., Cazares A., Al-Somainy A.A., Al-Mahbashi A., Almoayed K., Aldawla M., Al-Harazi A., Quilici M.L., Weill F.X., Dhabaan G., Thomson N.R. Genomic epidemiology reveals multidrug resistant plasmid spread between Vibrio cholerae lineages in Yemen. Nat. Microbiol. 2023; 8(10):1787–98. DOI: 10.1038/s41564-023-01472-1.
31. Ranjbar R., Sadeghy J., Shokri Moghadam M., Bakhshi B. Multi-locus variable number tandem repeat analysis of Vibrio cholerae isolates from 2012 to 2013 cholera outbreaks in Iran. Microb. Pathog. 2016; (97):84–8. DOI: 10.1016/j.micpath.2016.05.023.
32. Bhattacharya D., Dey S., Roy S., Parande M.V., Telsang M., Seem M.H., Parande A.V., Mantur B.G. Multidrug-resistant Vibrio cholerae O1 was responsible for a cholera outbreak in 2013 in Bagalkot, North Karnataka. Jpn. J. Infect. Dis. 2015; 68(4):347–50. DOI: 10.7883/yoken.JJID.2014.257.
33. Wang R., Yu D., Yue J., Kan B. Variations in SXT elements in epidemic Vibrio cholerae O1 El Tor strains in China. Sci. Rep. 2016; 6:22733. DOI: 10.1038/srep22733.
34. Eibach D., Herrera-León S., Gil H., Hogan B., Ehlkes L., Adjabeng M., Kreuels B., Nagel M., Opare D., Fobil J.N., May J. Molecular epidemiology and antibiotic susceptibility of Vibrio cholerae associated with a large cholera outbreak in Ghana in 2014. PLoS Negl. Trop. Dis. 2016; 10(5):e0004751. DOI: 10.1371/journal. pntd.0004751.
35. Irenge L.M., Ambroise J., Mitangala P.N., Bearzatto B., Kabangwa R.K.S., Duran J.F., Gala J.L. Genomic analysis of pathogenic isolates of Vibrio cholerae from eastern Democratic Republic of the Congo (2014–2017). PLoS Negl. Trop. Dis. 2020; 14(4):e0007642. DOI: 10.1371/journal.pntd.0007642.
36. Mashe T., Domman D., Tarupiwa A., Manangazira P., Phiri I., Masunda K., Chonzi P., Njamkepo E., Ramudzulu M., MtapuriZinyowera S., Smith A.M., Weill F.X. Highly resistant cholera outbreak strain in Zimbabwe. N. Engl. J. Med. 2020; 383(7):687–9. DOI: 10.1056/NEJMc2004773.
37. PRO/RUS> [Cholera (imported case) the Republic of Kazakhstan (Almaty)]. Archive Number: 20240405.8715805. (Cited 09 Apr 2024). [Internet]. Available from: https://promedmail.org/promed-post/?id=8715805.
38. PRO/EDR> Cholera, diarrhea & dysentery update (34): Estonia ex Azerbaijan, RFI. Archive Number: 20240724.8717738. Published Date: 2024-07-25. (Cited 25 Jul 2024). [Internet]. Available from: https://promedmail.org/promed-post/?id=8717738.
39. PRO/EDR> Cholera, diarrhea & dysentery update (50): Bulgaria ex India. Archive Number: 20240915.8718795. (Cited 16 Sep 2024). [Internet]. Available from: https://www.stiripesurse.ro/alerta-in-bulgaria-a-fost-inregistrat-primul-caz-de-holera-dupa-103-ani_3433335.html#google_vignette.
40. Fazylov V.Kh., Bashirova D.K., Malysheva L.M., Ziatdinov V.B., Nesterova D.F., Malova A.A., Tairova G.A. [Clinicalepidemiological characteristics of cholera outbreak in Kazan].Kazansky Meditsinsky Zhurnal [Kazan Medical Journal]. 2003;84(2):150–1.
41. Mishan’kin B.N., Vodopyanov A.S., Lomov Yu.M., Vodopyanov S.O., Romanova L.V., Cherepakhina I.Ya., Suchkov I.Yu., Duvanova O.V., Shishiyanu M.V. [Multilocus VNTR typing of cholera vibrio cultures isolated in Kazan during the cholera outbreak in the summer of 2001]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 2003; (6):11–5.
42. Kritsky A.A., Smirnova N.I., Kalyaeva T.B., Obrotkina N.F., Gracheva I.V., Katyshev A.D., Kutyrev V.V. [Comparative analysis of molecular-genetic properties of non-toxigenic strains of Vibrio cholerae O1 biovar El Tor isolated in Russia and in cholera endemic territories]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2021; (3):72–82. DOI: 10.21055/0370-1069-2021-3-72-82.
43. Mironova L.V., Bochalgin N.O., Gladkikh A.S., Feranchuk S.I., Ponomareva A.S., Balakhonov S.V. [Phylogenetic affinity and genome structure features of ctxAB–tcpA+ Vibrio cholerae from the surface waterbodies in the territory that is non-endemic as regards cholera]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (1):115–23. DOI: 10.21055/0370-1069-2020-1-115-123.
44. Esteves K., Mosser T., Aujoulat F., Hervio-Heath D., Monfort P., Jumas-Bilak E. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons. Front. Microbiol. 2015; 6:708. DOI: 10.3389/fmicb.2015.00708.
45. Kirchberger P.C., Orata F.D., Barlow E.J., Kauffman K.M., Case R.J., Polz M.F., Boucher Y. A small number of phylogenetically distinct clonal complexes dominate a coastal Vibrio cholerae population. Appl. Environ. Microbiol. 2016; 82(18):5576–86. DOI: 10.1128/AEM.01177-16.
46. Chowdhury F., Mather A.E., Begum Y.A., Asaduzzaman M., Baby N., Sharmin S., Biswas R., Uddin M.I., LaRocque R.C., Harris J.B., Calderwood S.B., Ryan E.T.,. Clemens J.D., Thomson N.R., Qadri F. Vibrio cholerae serogroup O139: isolation from cholera patients and asymptomatic household family members in Bangladesh between 2013 and 2014. PLoS Negl. Trop. Dis. 2015; 9(11):e0004183. DOI: 10.1371/journal.pntd.0004183.
47. Dorman M.J., Domman D., Uddin M.I., Sharmin S., Afrad M.H., Begum Y.A., Qadri F., Thomson N.R. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci. Rep. 2019; 9(1):5865. DOI: 10.1038/s41598-019-41883-x.
48. Schirmeister F., Dieckmann R., Bechlars S., Bier N., Faruque S.M., Strauch E. Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014; 33(5):767–78. DOI: 10.1007/s10096-013-2011-9.
49. Kechker P., Senderovich Y., Ken-Dror S., Laviad-Shitrit S., Arakawa E., Halpern M. Otitis media caused by V. cholerae O100: a case report and review of the literature. Front. Microbiol. 2017; 8:1619. DOI: 10.3389/fmicb.2017.01619.
50. Van Bonn S.M., Schraven S.P., Schuldt T., Heimesaat M.M., Mlynski R., Warnke P.C. Chronic otitis media following infection by non-O1/non-O139 Vibrio cholerae: a case report and review of the literature. Eur. J. Microbiol. Immunol. (Bp). 2020; 10(3):186–91. DOI: 10.1556/1886.2020.0001310.1556/1886.2020.00013.
51. Chowdhury G., Joshi S., Bhattacharya S., Sekar U., Birajdar B., Bhattacharyya A., Shinoda S., Ramamurthy T. Extraintestinal infections caused by non-toxigenic Vibrio cholerae non-O1/non-O139. Front. Microbiol. 2016; 7:144. DOI: 10.3389/fmicb.2016.00144.
52. Li M., Kotetishvili M., Chen Y., Sozhamannan S. Comparative genomic analyses of the vibrio pathogenicity island and cholera toxin prophage regions in nonepidemic serogroup strains of Vibrio cholerae. Appl. Environ. Microbiol. 2003; 69(3):1728–38. DOI: 10.1128/AEM.69.3.1728-1738.2003.
53. Olsvik O., Wahlberg J., Petterson B., Uhlén M., Popovic T., Wachsmuth I.K., Fields P.I. Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J. Clin. Microbiol. 1993; 31(1):22–5. DOI: 10.1128/jcm.31.1.22-25.1993.
54. Raychoudhuri A., Mukherjee P., Ramamurthy T., Nandy R.K., Takeda Y., Nair G.B., Mukhopadhyay A.K. Genetic analysis of CTX prophages with special reference to ctxB and rstR alleles of Vibrio cholerae O139 strains isolated from Kolkata over a decade. FEMS Microbiol. Lett. 2010; 303(2):107–15. DOI: 10.1111/j.15746968.2009.01856.x.
55. Eroshenko G.A., Krasnov Ya.M., Fadeeva A.V., Odinokov G.N., Kutyrev V.V. [Genetic characterization of toxigenic Vibrio cholerae non-O1/non-O139 strains, isolated in the Middle Asia]. [Russian Journal of Genetics]. 2013; 49(10):1165–74. DOI: 10.7868/S0016675813100032.
56. Carpenter M.R., Kalburge S.S., Borowski J.D., Peters M.C., Colwell R.R., Boyd E.F. CRISPR-Cas and contact-dependent secretion systems present on excisable pathogenicity islands with conserved recombination modules. J. Bacteriol. 2017; 199:e00842-16. DOI: 10.1128/JB.00842-16.
57. Monakhova E.V., Arkhangelskaya I.V., Titova S.V., Pisanov R.V. MSHA-like pili of non-toxigenic Vibrio choleraе strains. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2019; (3):75–80. (In English). DOI: 10.21055/0370-1069-2019-3-75-80.
58. Murase K., Arakawa E., Izumiya H., Iguchi A., Takemura T., Kikuchi T., Nakagawa I., Thomson N.R., Ohnishi M., Morita M. Genomic dissection of the Vibrio cholerae O-serogroup global reference strains: reassessing our view of diversity and plasticity between two chromosomes. Microb. Genom. 2022; 8(8):mgen000860. DOI: 10.1099/mgen.0.000860.
59. Onifade T.J.M., Hutchinson R., Van Zile K., Bodager D., Baker R., Blackmore C. Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011. Euro Surveill. 2011; 16(20):19870.
60. Takahashi E., Ochi S., Mizuno T., Morita D., Morita M., Ohnishi M., Koley H., Dutta M., Chowdhury G., Mukhopadhyay A.K., Dutta S., Miyoshi S.I., Okamoto K. Virulence of cholera toxin gene-positive Vibrio cholerae non-O1/non-O139 strains isolated from environmental water in Kolkata, India. Front. Microbiol. 2021; 12:726273. DOI: 10.3389/fmicb.2021.726273.
Review
For citations:
Kruglikov V.D., Gaevskaya N.E., Monakhova E.V., Moskvitina E.A., Agafonova V.V., Savina I.V., Podoynitsyna O.A., Selyanskaya N.A., Vodop’yanov A.S., Duvanova O.V., Men’shikova E.A., Ezhova M.I., Shipko E.S., Evteev A.V., Kaz’mina V.S., Bodraya P.V., Sokirkina E.N. Analysis of Peculiarities of Epidemiological Situation on Cholera in the World and in the Russian Federation in 2024 and Forecast of its Development in 2025. Problems of Particularly Dangerous Infections. 2025;(1):35-47. (In Russ.) https://doi.org/10.21055/0370-1069-2025-1-35-47