The Epidemiological Situation on Plague in the World and the Forecast of its Development in the Russian Federation for 2025
https://doi.org/10.21055/0370-1069-2025-1-74-83
Abstract
The aim of the review was to assess the epidemiological situation on plague in the world and to forecast its development in the Russian Federation in 2025. Epidemic manifestations of plague in 2015–2024 were registered on the territory of 10 states. The total number of cases was 5880; of which 582 were lethal (the mortality rate reached 9.9 %). In 2024, worldwide, cases of plague were reported in four countries: the Democratic Republic of the Congo (Ituri Province), the Republic of Madagascar (Fianarantsoa Province), the United States of America (Colorado, New Mexico, Oregon), and the People’s Republic of China. A total of 443 cases of plague were registered, of which 17 (3.8 %) had fatal outcome. The Russian Federation reported epidemiological security as regards plague, however, almost every year some of the natural foci show epizootic activity. In 2015–2024, plague-infected animals were detected in 4 natural foci: the Central Caucasian high-mountain, the Gorno-Altai high-mountain, the Tuva mountain, and the Precaspian sandy plague foci. In total, 370 strains of plague agent were isolated in the plague-enzootic territory of the Russian Federation in 2015–2024. The total area of the identified plague epizootics was 15 618.0 km2 . In 2024, local plague epizooties were registered in the Kosh-Agach district of the Altai Republic, Mongun-Taiga Kozhuun of the Republic of Tyva. Plague epizootics were detected on the territory of 2 (Gorno-Altai high-mountain and Tuva mountain) of the 11 natural plague foci of the Russian Federation. The total area of epizootics was 308.9 km2 (2023 – 731.2 km2 ). In total, 8 plague microbe cultures were isolated in 2024 (55 in 2023). Due to the implementation of a set of preventive measures through the efforts of the Rospotrebnadzor institutions, epidemic risks in epizootically active natural foci were significantly reduced, which was the basis for ensuring epidemiological safety as regards plague. The maintaining of the low epizootic potential of the lowland natural plague foci of the Caspian and Trans-Baikal areas in 2025 has been established. The forecast for the sustained tense epidemiological situation in the territory of the Altai Republic and the Republic of Tyva in 2025 is substantiated. The prospects of using the Loginom analytical platform to assess the potential epidemic hazard and predict the epidemiological situation in natural plague foci are outlined.
About the Authors
N. V. PopovRussian Federation
46, Universitetskaya St., Saratov, 410005
I. G. Karnaukhov
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. A. Kuznetsov
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. N. Matrosov
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. V. Ivanova
Russian Federation
46, Universitetskaya St., Saratov, 410005
K. S. Martsokha
Russian Federation
46, Universitetskaya St., Saratov, 410005
Sh. V. Magerramov
Russian Federation
46, Universitetskaya St., Saratov, 410005
M. V. Pospelov
Russian Federation
46, Universitetskaya St., Saratov, 410005
V. M. Korzun
Russian Federation
78, Trilissera St., Irkutsk, 664047
D. B. Verzhutsky
Russian Federation
78, Trilissera St., Irkutsk, 664047
E. V. Chipanin
Russian Federation
78, Trilissera St., Irkutsk, 664047
A. V. Kholin
Russian Federation
78, Trilissera St., Irkutsk, 664047
A. A. Lopatin
Russian Federation
4, Mussorgskogo St., Moscow, 127490
V. M. Dubyansky
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
U. M. Ashibokov
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
A. Yu. Gazieva
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
I. V. Kutyrev
Russian Federation
3a, Novogireevskaya St., Moscow, 111123
T. Z. Ayazbaev
Kazakhstan
14, Zhakhanger St., Almaty, 050054
D. M. Bammatov
Russian Federation
3, Kubanskaya St., Astrakhan, 414057
S. V. Balakhonov
Russian Federation
78, Trilissera St., Irkutsk, 664047
A. N. Kulichenko
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
V. V. Kutyrev
Russian Federation
46, Universitetskaya St., Saratov, 410005
References
1. Bezerra M.F., Fernandes D.L.R.S., Rocha I.V., Pitta J.L.L.P., Freitas N.D.A., Oliveira A.L.S., Guimarães R.J.P.S., Gomes E.C.S., de Andreazzi C.S., Sobreira M., Rezende A.M., Cordeiro-Estrela P., Almeida A.M.P. Ecologic, geoclimatic, and genomic factors modulating plague epidemics in primary natural focus, Brazil. Emerg. Infect. Dis. 2024; 30(9):1850–64. DOI: org/10.3201/eid3009.240468.
2. Popov N.V., Eroshenko G.A., Karnaukhov I.G., Kuznetsov A.A., Matrosov A.N., Ivanova A.V., Porshakov A.M., Lyapin M.N., Korzun V.M., Verzhutsky D.B., Ayazbaev T.Z., Lopatin A.A., Ashibokov U.M., Balakhonov S.V., Kulichenko A.N., Kutyrev V.V. [Epidemiological and epizootic situation on plague in the Russian Federation and forecast for its development for 2020–2025]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (1):43–50. DOI: 10.21055/0370-1069-2020-1-43-50.
3. Xu L., Wang Q., Yang R., Ganbold D., Tsogbadrakh N., Dong K., Liu M., Altantogtokh D., Liu Q., Undrakhbold S., Boldgiv B., Liang W., Stenseth N.C. Climate-driven marmot-plague dynamics in Mongolia and China. Sci. Rep. 2023; 13(1):11906. DOI: 10.1038/s41598-023-38966-1. Erratum in: Sci. Rep. 2023; 13(1):14663. DOI: 10.1038/s41598-023-41800-3.
4. Wimsatt J., Eads D.A., Matchett M.R., Biggins D.E. Alternative lifestyles: A plague persistence hypothesis. Ecosphere. 2023; 14(11):e4673. DOI: 10.1002/ecs2.4673.
5. Rajamannar V., Govindarajan R., Kumar A., Samuel P.P. A review of public health important fleas (Insecta, Siphonaptera) and flea-borne diseases in India. J. Vector Borne Dis. 2022; 59(1):12–21. DOI: 10.4103/0972-9062.328977.
6. Yang R., Atkinson S., Chen Z., Cui Y., Du Z., Han Y., Sebbane F., Slavin P., Song Y., Yan Y., Wu Y., Xu L., Zhang C., Zhang Y., Hinnebusch B.J., Stenseth N.C., Motin V.L. Yersinia pestis and plague: some knowns and unknowns. Zoonoses (Burlingt). 2023; 3(1):5. DOI: 10.15212/zoonoses-2022-0040.
7. Carlson C.J., Bevins S.N., Schmid B.V. Plague risk in the western United States over seven decades of environmental change. Glob. Chang. Biol. 2022; 28(3):753–69. DOI: 10.1111/gcb.15966.
8. Abdel Z., Abdeliyev B., Yessimseit D., Begimbayeva E., Mussagalieva R. Natural foci of plague in Kazakhstan in the spacetime continuum. Comp. Immunol. Microbiol. Infect. Dis. 2023; 100:102025. DOI: 10.1016/j.cimid.2023.102025.
9. Pitta J.L.L.P., Bezerra M.F., Fernandes D.L.R.D.S., Block T., Novaes A.S., Almeida A.M.P., Rezende A.M. Genomic analysis of Yersinia pestis strains from Brazil: Search for virulence factors and association with epidemiological data. Pathogens. 2023; 12(8):991. DOI: 10.3390/pathogens12080991.
10. Cao B., Bai C., Wu K., La T., Su Y., Che L., Zhang M., Lu Y., Gao P., Yang J., Xue Y., Li G. Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China. Glob. Chang. Biol. 2023; 29(13):3723–46. DOI: 10.1111/gcb.16708.
11. Eads D.A., Biggins D.E., Wimsatt J., Eisen R.J., Hinnebusch B.J., Matchett M.R., Goldberg A.R., Livieri T.M., Hacker G.M., Novak M.G., Buttke D.E., Grassel S.M., Hughes J.P., Atiku L.A. Exploring and mitigating plague for one health purposes. Curr. Trop. Med. Rep. 2022; 9(4):169–84. DOI: 10.1007/s40475-022-00265-6.
12. Alderson J., Quastel M., Wilson E., Bellamy D. Factors influencing the re-emergence of plague in Madagascar. Emerg. Top. Life Sci. 2020; 4(4):411–21. DOI: 10.1042/ETLS20200334.
13. Eisen R.J., Atiku L.A., Enscore R.E., Mpanga J.T., Acayo S., Mead P.S., Apangu T., Yockey B.M., Borchert J.N., Beard C.B., Gage K.L. Epidemiology, ecology and prevention of Plague in the West Nile Region of Uganda: The value of long-term field studies. Am. J. Trop. Med. Hyg. 2021; 105(1):18–23. DOI: 10.4269/ajtmh.20-1381.
14. Qazi S., Ullah I., Jabbar A., Junaid Tahir M. Plague outbreaks in Africa – A gesture of new pandemic. Disaster Med. Public Health Prep. 2022; 16(6):2228–9. DOI: 10.1017/dmp.2022.67.
15. Popov N.V., Kutyrev I.V., Ivanova A.V., Nikiforov K.A., Zubova A.A., Neishtadt Ya.A., Boiko A.V., Kuklev E.V., Toporkov V.P. [On the existence of East African natural megafocus of Yersinia pestis, phylogenetic lineage 1.ANT of the antique biovar of the main subspecies: epidemic activity, spatial and biocenotic structure]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2024; (4):35–41. DOI: 10.21055/0370-1069-2024-4-35-41.
16. Eroshenko G.A., Kubanychbekova G.K., Kovrizhnikov A.V., Dzhaparova A.K., Mukanmetesen uulu Zh., Abdygazieva A.K., Sidorin A.S., Krasnov Ya.M., Kuznetsov A.A., Fadeeva A.V., Nikiforov A.K., Devdariani Z.L., Kuklev E.V., Boiko A.V., Kutyrev V.V. [Molecular identification of Yersinia pestis strains isolated in the Aksai high-mountain focus of the Kyrgyz Republic in 2024]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections].2024; (4):78–87. DOI: 10.21055/0370-1069-2024-4-78-87.
17. Kurmanov Zh.B., Mambetov G.I., Zholdas A.S., Seitpeshov U.A., Beksultanov A.T., Suleymenov A.T., Tagibergenov A.M., Sayasatova G.S., Mukhambediyarov D.S. [On the analysis of the activity of the plague epizootia in the territory of the focus of the plague in the northern island of derbes, between 2014–2023]. Osobo Opasnye Infektsii i Biologicheskaya Bezopasnost’ [Particularly Dangerous Infections and Biological Safety]. 2024; (8-9):50–8.
18. Meka-Mechenko V.G., Sadovskaya V.P. [Results of monitoring the prevalence and number of carriers, fleas of the great gerbil and epizootiological survey in the territory of the natural plague foci of Kazakhstan in 2023]. Osobo Opasnye Infektsii i Biologicheskaya Bezopasnost’ [Particularly Dangerous Infections and Biological Safety]. 2024; (8-9):58–74.
19. Bakaev V.V., Gashenko T.Yu., Mardanly S.S., Zhigaleva O.N. [Application of artificial intelligence for the development and strengthening of the epidemiological surveillance (Literature review)]. Epidemiologiya i Infektsionnye Bolezni [Epidemiology and Infectious Diseases]. 2024; 29(3):126–34. DOI: 10.51620/3034-1981-2024-29-3-126-134.
20. Kuzin A.A., Glushakov R.I., Parfenov S.A., Sapozhnikov K.V., Lazarev A.A. [Development of an artificial intelligence system for the forecasting of infectious diseases]. Fundamental’naya i Klinicheskaya Meditsina [Fundamental and Clinical Medicine]. 2023; 8(3):143–54. DOI: 10.23946/2500-0764-2023-8-3-143-154.
Review
For citations:
Popov N.V., Karnaukhov I.G., Kuznetsov A.A., Matrosov A.N., Ivanova A.V., Martsokha K.S., Magerramov Sh.V., Pospelov M.V., Korzun V.M., Verzhutsky D.B., Chipanin E.V., Kholin A.V., Lopatin A.A., Dubyansky V.M., Ashibokov U.M., Gazieva A.Yu., Kutyrev I.V., Ayazbaev T.Z., Bammatov D.M., Balakhonov S.V., Kulichenko A.N., Kutyrev V.V. The Epidemiological Situation on Plague in the World and the Forecast of its Development in the Russian Federation for 2025. Problems of Particularly Dangerous Infections. 2025;(1):74-83. (In Russ.) https://doi.org/10.21055/0370-1069-2025-1-74-83