Preview

Problems of Particularly Dangerous Infections

Advanced search

Anti-Vector Immune Response Formed after Immunization with Recombinant Vaccines Based on the Vaccinia Virus, MVA Strain

https://doi.org/10.21055/0370-1069-2025-1-105-111

Abstract

The search for safe approaches to primary immunization of the adult population under the absence of herd immunity to orthopoxviruses, when re-initiation of smallpox vaccination campaign is required, is currently very relevant. Thereat, the clinical trials of recombinant vaccines based on the vaccinia virus, MVA strain, against different illnesses confirm that they are safe for humans and in addition to target efficiency (capacity to induce immunity to proteins expressed by embedded foreign genes), show immunogenicity to vector – vaccinia virus. The aim of the review was to evaluate anti-vector immunity level in people immunized by recombinant viral vaccines, based on vaccinia virus, MVA strain. Explicit experimental data on the level of anti-vector immunity in response to immunization with recombinant vaccines in different countries of the world are presented. Those studies were mainly carried out with recombinants containing embedded immunodominant genes of human immunodeficiency virus (HIV), as the number of works on the creation of recombinant vaccines expressing the antigen determinants of HIV significantly exceeds the number of those on recombinant preparations based on vaccinia virus; the vaccines are successfully used in medical practice and are safe even for people with immunodeficiency conditions. The results obtained indicated an increase in anti-vector immunity with escalation of vaccine dose and peak indicators after two immunizations. Further injections of the vaccine did not lead to increase in the virus neutralizing antibodies, their production gradually decreased over a period of one year or more. In addition to the humoral immune response, cellular anti-vector immunity, represented mainly by CD8+ T-cells, was induced. The insertion of foreign genes did not affect the formation of anti-vector immunity, just as its level did not affect the development of humoral and cellular immune responses to proteins expressed by the embedded genes. Comparative characterization of the anti-vector immunity indices after immunization with recombinant vaccines and specific immunity in response to the IMVAMUNE® vaccine showed that their levels either corresponded to each other, or in the first case the values were even higher.

About the Authors

L. F. Stovba
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, Moscow Region, 141306



N. K. Chernikova
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, Moscow Region, 141306



A. L. Khmelev
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, Moscow Region, 141306



S. V. Borisevich
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, Moscow Region, 141306



References

1. Silva N.I.O., de Oliveira J.S., Kroon E.G., Trindade G.S., Drumond B.P. Here, there, and everywhere: The wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses. 2020; 13(1):43. DOI: 10.3390/v13010043.

2. Gao J., Gigante C., Khmaladze E., Liu P., Tang S., Wilkins K., Zhao K., Davidson W., Nakazawa Y., Maghlakelidze G., Geleishvili M., Kokhreidze M., Carroll D.S., Emerson G., Li Y. Genome sequences of Akhmeta virus, an early divergent old world orthopoxvirus. Viruses. 2018; 10(5):252. DOI: 10.3390/v10050252.

3. Cardetti G., Gruber C.E.M., Eleni C., Carletti F., Castilletti C., Manna G., Rosone F., Giombini E., Selleri M., Lapa D., Puro V., Di Caro A., Lorenzetti R., Scicluna M.T., Grifoni G., Rizzoli A., Tagliapietra V., De Marco L., Capobianchi M.R., Autorino G.L. Fatal outbreak in Tonkean macaques cause by possible novel orthopoxvirus, Italy, January 2015. Emerg. Infect. Dis. 2017; 23(12):1941–9. DOI: 10.3201/eid2312.162098.

4. Gruber C.E.M., Giombini E., Selleri M., Tausch S.H., Andrusch A., Tyshaieva A., Cardeti G., Lorenzetti R., De Marco L., Carletti F., Nitsche A., Capobianchi M.R., Ippolito G., Autorino G.L., Castilletti C. Whole genome characterization of orthopoxvirus (OPV) Abatino, a zoonotic virus representing a putative novel clade of old world orthopoxvirus. Viruses. 2018; 10(10):546. DOI: 10.3390/v10100546.

5. Gigante C.M., Gao J., Tang S., McCollum A.M., Wilkins K., Reynolds M.G., Davidson W., McLaughlin J., Olson V.A., Li Y. Genome of Alaskapox virus, a novel orthopoxvirus isolated from Alaska. Viruses. 2019; 11(8):708. DOI: 10.3390/v11080708.

6. Gorse G.J., Newman M.J., deCamp A., Hay C.M., De Rosa S.C., Noonan E., Livingston B.D., Fuchs J.D., Kalams S.A., CassisGhavami F.L.; NIAID HIV Vaccine Trials Network. DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults. Clin. Vaccine Immunol. 2012; 19(5):649–58. DOI: 10.1128/CVI.00038-12.

7. Vasan S., Schlesinger S.J., Chen Z., Hurley A., Lombardo A., Than S., Adesanya P., Bunce C., Boaz M., Boyle R., Sayeed E., Clark L., Dugin D., Boente-Carrera M., Schmidt C., Fang Q., LeiBa, Huang Y., Zaharatos G.J., Gardiner D.F., Caskey M., Seamons L., Ho M., Dally L., Smith C., Cox J., Gill D., Gilmour J., Keefer M.C., Fast P., Ho D.D. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1B'/C candidate vaccine. PLoS One. 2010; 5(1):e8816. DOI: 10.1371/journal. pone.0008816.

8. Walsh S.R., Seaman M.S., Grandpre L.E. Charbonneau C., Yanosick K.E., Metch B., Keefer M.C., Dolin R., Baden L.R. Impact of anti-orthopoxvirus neutralizing antibodies induced by heterologous prime-boost HIV-1 vaccine on insert-specific immune responses. Vaccine. 2012; 31(1):114–9. DOI: 10.1016/jvaccine.2012.10.093.

9. Sandström E., Nilsson C., Hejdeman B., Bråve A., Bratt G., Robb M., Cox J., Vancott T., Marovich M., Stout R., Aboud S., Bakari M., Pallangyo K., Ljungberg K., Moss B., Earl P., Michael N., Birx D., Mhalu F., Wahren B., Biberfeld G.; HIV Immunogenicity Study 01/02 Team. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J. Infect. Dis. 2008; 198(10):1482– 90. DOI: 10.1086/592507.

10. Nilsson C., Godoy-Ramirez K., Hejdeman B., Bråve A., Gudmundsdotter L., Hallengärd D., Currier J.R., Wieczorek L., Hasselrot K., Earl P.L., Polonis V.R., Marovich M.A., Robb M.L., Sandström E., Wahren B., Biberfeld G. Broad and potent cellular and humoral immune responses after a second late HIV-modified vaccinia virus Ankara vaccination in HIV-DNA-primed and HIV-modified vaccinia virus Ankara-boosted Swedish vaccinees. AIDS Res. Hum. Retroviruses. 2014; 30(3):299–311. DOI: 10.1089/AID.2013.0149.

11. García F., Bernaldo de Quirós J.C.L., Gómez C.E., Perdiguero B., Nájera J.L., Jiménez V., García-Arriaza J., Guardo A.C., Pérez I., Díaz-Brito V., Conde M.S., González N., Alvarez A., Alcamí J., Jiménez J.L., Pich J., Arnaiz J.A., Maleno M.J., León A., Muñoz-Fernández M.A., Liljeström P., Weber J., Pantaleo G., Gatell J.M., Plana M., Esteban M. Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02). Vaccine. 2011; 29(46):8309–16. DOI: 10.1016/j.vaccine.2011.08.098.

12. Guardo A.C., Gómez C.E., Díaz-Brito V., Pich J., Arnaiz J.A., Perdiguero B., García-Arriaza J., González N., Sorzano C.O.S., Jiménez L., Jiménez J.L., Muñoz-Fernández M.Á., Gatell J.M., Alcamí J., Esteban M., de Quirós J.C.L.B., García F., Plana M.; RISVAC02boost study. Safety and vaccine-induced HIV-1 immune responses in healthy volunteers following a late MVA-B boost 4 years after the last immunization. PLoS One. 2017; 12(10):e0186602. DOI: 10.1371/journal.pone.0186602.

13. Mehendаle S., Thakar M., Sahay S., Kumar M., Shete A., Sathyamurthi P., Verma A., Kurle S., Shrotri A., Gilmour J., Goyal R., Dally L., Sayeed E., Zachariah D., Ackland J., Kochhar S., Cox J.H., Excler J.-L., Kumaraswami V., Paranjape R., Ramanathan V.D. Safety and immunogenicity of DNA and MVA HIV-1 subtype C vaccine prime-boost regimens: a phase I randomised trial in HIVuninfected Indian volunteers. PLoS One. 2013; 8(2):e55831. DOI: 10.1371/journal.pone.0055831.

14. Hayes P., Gilmour J., von Lieven A., Gill D., Clark L., Kopycinski J., Cheeseman H., Chung A., Alter G., Dally L., Zachariah D., Lombardo A., Ackland J., Sayeed E., Jackson A., Boffito M., Gazzard B., Fast P.E., Cox J.H., Laufer D. Safety and immunogenicity of DNA prime and modified vaccinia Ankara virus-HIV sub-type C vaccine boost in healthy adults. Clin. Vaccine Immunol. 2013; 20(3):397–408. DOI: 10.1128/CVI.00637-12.

15. Gómez C.E., Perdiguero B., García-Arriaza J., Cepeda V., Sánchez-Sorzano C.Ó., Mothe B., Jiménez J. L., Muñoz-Fernández M.Á., Gatell J.M., López Bernaldo de Quirós J.C., Brander C., García F., Esteban M. A phase I randomized therapeutic MVA-B vaccination improves the magnitude and quality of the T cell immune responses in HIV-1-infected subjects on HAART. PLoS One. 2015; 10(11):e0141456. DOI: 10.1371/journal.pone.0141456.

16. Goepfert P.A., Elizaga M.L., Sato A., Qin L., Cardinali M., Hay C.M., Hural J., DeRosa S.C., DeFawe O.D., Tomaras G.D., Montefiori D.C., Xu Y., Lai L., Kalams S.A., Baden L.R., Frey S.E., Blattner W.A., Wyatt L.S., Moss B., Robinson H.L.; National Institute of Allergy and Infectious Diseases HIV Vaccine Trials Network. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J. Infect. Dis. 2011; 203(5):610–9. DOI: 10.1093/infdis/jiq105.

17. Satti I., Meyer J., Harris S.A., Manjaly Thomas Z.-R., Griffiths K., Antrobus R.D., Rowland R., Ramon R.L., Smith M., Sheehan S., Bettinson H., McShane H. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomized controlled trial. Lancet. Infect. Dis. 2014; 14(10):939–46. DOI: 10.1016/S1473-3099(14)70845-X.

18. von Krempelhuber A., Vollmar J., Pokorny R., Rapp P., Wulff N., Petzold B., Handley A., Mateo L., Siersbol H., Kollaritsch H., Chaplin P. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE®. Vaccine. 2010; 28(5):1209–16. DOI: 10.1016/j.vaccine.2009.11.030.

19. Frey S.E., Winokur P.L., Hill H., Goll J.B., Chaplin P., Belshe R.B. Phase II randomized, double-blinded comparison of a single high dose (5·108 TCID50) of modified vaccinia Ankara compared to a standard dose (1·108 TCID50) in healthy vaccinianaïve individuals. Vaccine. 2014; 32(23):2732–9. DOI: 10/1016/j. vaccine.2014.02.043.

20. Greenberg R.N., Hay C.M., Stapleton J.T., Marbury T.C., Wagner E., Kreitmeir E., Röesch S., von Krempelhuber A., Young P., Nichols R., Meyer T.P., Schmidt D., Weigl J., Virgin G., ArndtzWiedemann N., Chaplin P. A randomized, double-blind, placebo controlled Phase II trial investigating the safety and immunogeni city of modified vaccinia Ankara smallpox vaccine (MVA-BN®) in 56-80-year-old subjects. PLoS One. 2016; 11(6):e0157335. DOI: 10.1371/journal.pone.0157335.


Review

For citations:


Stovba L.F., Chernikova N.K., Khmelev A.L., Borisevich S.V. Anti-Vector Immune Response Formed after Immunization with Recombinant Vaccines Based on the Vaccinia Virus, MVA Strain. Problems of Particularly Dangerous Infections. 2025;(1):105-111. (In Russ.) https://doi.org/10.21055/0370-1069-2025-1-105-111

Views: 140


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)