Phylogeny and Biological Properties of Brucella abortus Strains Isolated in the Volga and Central Federal Districts in 2017–2024
https://doi.org/10.21055/0370-1069-2025-4-82-87
Abstract
The aim of the work was to study biological, molecular-genetic properties and to determin the phylogenetic affiliation of Brucella abortus strains isolated in the Volga and Central Federal Districts.
Materials and methods. A research of 21 strains of B. abortus isolated in the Volga Federal District and the Central Federal District in 2017–2024 was conducted. Genome sequencing was performed on the DNBSEQ G50RS platform (MGI, China) using the MGI Easy FAST FS DNA Library Prep Set V2.1 reagent kit (MGI, China) according to a standard protocol. Phylogenetic reconstruction was performed using the maximum likelihood method in the “RealPhy” software.
Results and discussion. All strains have tinctorial, morphological, and cultural properties characteristic of typical B. abortus strains. The topology of the phylogenetic tree indicates the common origin of the strains isolated in the Volga Federal District and the Central Federal District in 2017–2024. It has been found that the studied isolates are genetically close to the B. abortus strains isolated from biomaterial from animals with brucellosis and food products of animal origin from the Lipetsk Region (2017), Samara Region (2016), Stavropol Territory (2015), Republic of Dagestan (2015), Republic of Kalmykia (2012). The general clustering of strains from the Volga Federal District and the Central Federal District and from different entities of the North Caucasus Federal District and the Southern Federal District indicates the presence of a retrospective epidemiological link between brucellosis foci and the affected over the long period territory of the southern European part of Russia, including the North Caucasus.
About the Authors
D. A. KovalevRussian Federation
Dmitry A. Kovalev,
13–15, Sovetskaya St., Stavropol, 355035
S. V. Pisarenko
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
I. V. Kuznetsova
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
V. I. Kolomytseva
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
D. G. Ponomarenko
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
N. A. Shapakov
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
A. A. Khachaturova
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
N. S. Safonova
Russian Federation
13–15, Sovetskaya St., Stavropol, 355035
References
1. Corbel M.J. Brucellosis in humans and animals. World Health Organization; 2006.
2. Hayoun M.A., Muco E., Shorman M. Brucellosis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. PMID 28722861.
3. Ponomarenko D.G., Matvienko A.D., Khachaturova A.A., Zharinova I.V., Skudareva O.N., Trankvilevsky D.V., Logvinenko O.V., Rakitina E.L., Kostyuchenko M.V., Kondrat’eva Yu.V., Maletskaya O.V., Kulichenko A.N. [Analysis of the situation on brucellosis around the world and in the Russian Federation]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2024; (2):36–50. DOI: 10.21055/0370-1069-2024-2-36-50.
4. Andrews S. FastQC: A quality control tool for high throughput sequence data. (Cited 07 July 2025). [Internet]. Available from: https://github.com/s-andrews/FastQC.
5. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a fle¬xible trimmer for Illumina sequence data. Bioinformatics. 2014. 30(15):2114–20. DOI: 10.1093/bioinformatics/btu170.
6. Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. Using SPAdes de novo Assembler. Curr. Protoc. Bioinformatics. 2020; 70(1):e102. DOI: 10.1002/cpbi.102.
7. Mikheenko A., Prjibelski A., Saveliev V., Antipov D., Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018; 34(13):i142–i150. DOI: 10.1093/bioinformatics/bty266.
8. Tanizawa Y., Fujisawa T., Nakamura Y. DFAST: a fle¬xible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics. 2018; 34(6):1037–9. DOI: 10.1093/bioinformatics/btx713.
9. Whatmore A.M., Koylass M.S., Muchowski J., Edwards-Smallbone J., Gopaul K.K., Perrett L.L. Extended multilocus sequence analysis to describe the global population structure of the genus Brucella: phylogeography and relationship to biovars. Front. Microbiol. 2016; 7:2049. DOI: 10.3389/fmicb.2016.02049.
10. Bertels F., Silander O.K., Pachkov M., Rainey P.B., van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 2014; 31(5):1077–88. DOI: 10.1093/molbev/msu088.
11. Rambaut A. FigTree v1.4.2. A Graphical Viewer of Phylogenetic Trees. (Cited 07 July 20225). [Internet]. Available from: http://tree.bio.ed.ac.uk/software/figtree.
Review
For citations:
Kovalev D.A., Pisarenko S.V., Kuznetsova I.V., Kolomytseva V.I., Ponomarenko D.G., Shapakov N.A., Khachaturova A.A., Safonova N.S. Phylogeny and Biological Properties of Brucella abortus Strains Isolated in the Volga and Central Federal Districts in 2017–2024. Problems of Particularly Dangerous Infections. 2025;(4):82-87. (In Russ.) https://doi.org/10.21055/0370-1069-2025-4-82-87
JATS XML





































