Preview

Problems of Particularly Dangerous Infections

Advanced search

Mechanisms of Damaging Bacteria during Lyophilization and Protective Activity of Shielding Media

https://doi.org/10.21055/0370-1069-2016-3-5-12

Abstract

Considered are the current views on the mechanisms and factors of bacterial cell degradation during lyophilization and storage of dry preparations. Given are the data on the most effective lyo-rotectors and mechanisms of their shielding action. Lyophilization or sublimation from the frozen state is the basic method of bacteria preservation in culture collections and biological resource centers. In the process of lyophilization cells are exposed to damaging stress factors. Low temperatures, water crystallization, osmotic process, pH alterations, and dehydration affect cell cultures and molecules. Oxidative reactions, running in dry cell preparations, change the composition and structure of lipids, proteins, nucleic acids, and, thereby reduce the number of living cells during the storage. One of the key factors that influences bacterial viability after lyophilization and storage is the composition of shielding medium, with which the cells are mixed up before conservation. Utilization of protective media, containing carbohydrates, amino acids, restored milk, gelatin and other components, decreases the probability of cell elements damaging and extends the assured storage life.

About the Authors

I. V. Gracheva
Russian Research Anti-Plague Institute “Microbe”
Russian Federation
46, Universitetskaya St., Saratov, 410005, Russian Federation


A. V. Osin
Russian Research Anti-Plague Institute “Microbe”
Russian Federation
46, Universitetskaya St., Saratov, 410005, Russian Federation


References

1. Volkov V.Ya. [Concerning physiological and physical-chemical mechanisms of microorganism resistance to freezing and drying up processes]. Mikrobiologiya. 1994; 63(1): 5–15.

2. Grishkina T.A., Timofeyeva E.V., Spiridonov V.A. [Assessment of the effects of long storage of glanders pathogen museum collection stains]. Probl. Osobo Opasn. Infek. 2004; 1:40–2.

3. Kupletskaya M.B., Netrusov A,I, [Viability of lyophilized microorganism after 50 years of storage]. Mikrobiologiya. 2011; 80(6): 842–6.

4. Adams G. The Principles of Freeze-Drying. Methods Mol. Biol. 2007; 368:15–38. DOI: 10.1007/978-1-59745-362-2_2.

5. Amenan Y.A., Wathelet B., Thonart P. Effect of protective compounds on the survival, electrolyte leakage, and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage. J. Microbiol. Biotechnol. 2009; 19(8):810–7.

6. Bank H., Mazur P. Visualization of freezing damage. J. Cell. Biol. 1973; 5(3):729–42.

7. Bergenholtz A.S., Wessman P., Wuttke A., Hеkansson S. A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying. Cryobiology. 2012; 64:152–9. DOI: 10.1016/j.cryobiol.2012.01.002.

8. Buitink J., Leprince O. Intracellular glasses and seed survival in the dry state. C. R. Biol. 2008; 331(10):788–95. DOI: 10.1016/j.crvi.2008.08.002.

9. Cabri guidelines. Laboratory procedures of microorganisms. Protective suspension media for freezing or (freeze)-drying. [Cited 05 Nov 2015]. Available from: http://www.cabri.org/guidelines/micro-organisms/M300Ap3.html.

10. Carlsen C.U., Kurtmann L., Brüggemann D.A., Hoff S., Risbo J., Skibsted L.H. Investigation of oxidation in freeze-dried membranes using the fluorescent probe C11-BODIPY (581/59). Cryobiology. 2009; 58:262–7. DOI: 10.1016/j.cryobiol.2009.01.005.

11. Castro H.P., Teixeira P.M., Kirby R. Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying. Biotechnol. Lett. 1996; 18:99–104.

12. Cleland D., Krader P., McCree C., Tang J., Emerson D. Glycine betaine as a cryoprotectant for prokaryotes. J. Microbiol. Methods. 2004; 58(1):31–8.

13. Costa E., Usall J., Teixido N., Garsia N., Vinas I. Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. J. Appl. Microbiol. 2000; 89:793–800. DOI: 10.1046/j.1365-2672.2000.01182.x.

14. Crowe J.H., Crowe L.M., Hoekstra F.A. Phase transitions and permeability changes in dry membranes during rehydration. J. Bioenerg. Biomembr. 1989; 21(1):77–91.

15. Crowe L.M., Reid D.S., Crowe J.H. Is trehalose special for preserving dry biomaterials? Biophys. J. 1996; 71:2087–93.

16. Delgado H., Moreira T., Luis L., Garsia H., Martino T.K., Moreno A. Preservation of Vibrio cholerae by freeze-drying. Cryo-Letters. 1995; 16:91–101.

17. Dumont F., Marechal P-A., Gervais P. Involvement of two specific causes of cell mortality in freeze-thaw cycles with freezing to -196 °C. Appl. Environ. Microbiol. 2006; 72(2):1330–5. DOI: 10.1128/AEM.72.2.1330-1335.2006.

18. Fonseca F., Marin M., Morris G.J. Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: freezing kinetics and storage temperature effects. Appl. Environ. Microbiol. 2006; 72(10):6474–82. DOI: 10.1128/AEM.00998-06.

19. Fonseca F., Passot S., Cunin O., Marin M. Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media. Biotechnol. Prog. 2004; 20:229–38. DOI: 10.1021/bp034136n.

20. Gao D., Critser J.K. Mechanisms of cryoinjury in living cells. ILAR J. 2000; 41(4):187–96. DOI: 10.1093/ilar.41.4.187.

21. Guidance for the operation of biological research centres (BRCs) Part 2: Microorganism domen 2007. [Cited 05 Niv 2015]. Available from: http://www.oecd.org/sti/biotech/38777417.

22. Heckly R.J., Dimmick R.L., Windle J.J. Free radical formation and survival of lyophilized microorganisms. J. Bacteriol. 1963; 85:961–6.

23. Hubalek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology. 2003; 46(3):205–29. DOI: 10.1016/S0011-2240(03)00046-4.

24. Kurtmann L., Carlsen C.U., Risbo J., Skibsted L.H. Storage stability of freeze- dried Lactobacillus acidophilus (La-5) in relation to water activity and the presence of oxygen and ascorbate. Cryobiology. 2009; 58:175–80. DOI: 10.1016/j.cryobiol.2008.12.001.

25. Kurtmann L., Carlsen C.U., Skibsted L.H., Risbo J. Water activitytemperature state diagrams of freeze-dried Lactobacillus acidophilus (La-5): influence of physical state on bacterial survival during storage. Biotechnol. Prog. 2009; 25(1):265–70. DOI: 10.1002/btpr.96.

26. Leslie S.B., Israeli E., Lighthart B., Crowe J.H., Crowe L.M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 1995; 61(10):3592–7.

27. Lievense L.C., Verbreek M.A.M., Noomen A., van’t Riet K. Mechanism of dehydration inactivation of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 1994; 41(1):90–4. DOI: 10.1007/BF00166087.

28. Martos G.I., Minahk C.J., de Valdez G.F., Morero R. Effects of protective agents on membrane fluidity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Let. Appl. Microbiol. 2007; 45:282–8. DOI: 10.1111/j.1472-765X.2007.02188.x.

29. Miyamoto-Shinohara Y., Sukenobe J., Imaizumi T., Nakahara T. Survival of freeze- dried bacteria. J. Gen. Appl. Microbiol. 2008; 54(1):9–24. DOI: 10.2323/jgam.54.9.

30. Morgan C.A., Herman N., White P.A., Vesey G. Preservation of microorganisms by drying: a review. J. Microbiol. Methods. 2006; 66:183–93. DOI:10.1016/j.mimet.2006.02.017.

31. Ohtake S., Martin R.A., Saxena A., Lechuga-Ballesteros D., Santiago A.E., Barry E.M., Truong-Le V. Formulation and stabilization of Francisella tularensis live vaccine strain. J. Pharm. Sci.. 2011; 100(8):3076– 87. DOI: 10.1002/jps.22563.

32. Pehkonen K.S., Roos Y.H., Miao S., Ross R.P., Stanton C. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG). J. Appl. Microbiol. 2008; 104:1732–43. DOI: 10.1111/j.1365-2672.2007.03719.x.

33. Peiren J., Buyse J., De Vos P., Lang E., Clermont D., Hamon S., Bégaud E., Bizet C., Pascual J., Ruvira M.A., Macián M.C., Arahal D.R. Improving survival and storage stability of bacteria recalcitrant to freezedrying: a coordinated study by European culture collections. Arahal. Appl. Microbiol. Biotechnol. 2015; 99(8):3559–71. DOI: 10.1007/s00253-015-6476-6.

34. Portner D.C., Leuschner R.G.K., Murray B.S. Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni. Cryobiology. 2007; 54(3):265–70. DOI:10.1016/j.cryobiol.2007.03.002.

35. Prakash O., Nimonkar Y., ShoucheY.S. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 2013; 339(1):1–9. DOI: 10.1111/1574-6968.12034.

36. Santivarangkna C., Wenning M., Foerst P., Kulozik U. Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J. Appl. Microbiology. 2007(3); 102:748–56. DOI: 10.1111/j.1365-2672.2006.03123.x.

37. Schwab C., Vogel R., Ganzle M.G. Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology. 2007; 55(2):108–14. DOI: 10.1016/j.cryobiol.2007.06.004

38. Sinskey T.J., Silverman G.J. Characterization of injury incurred by Escherichia coli upon freeze-drying. J. Bacteriol. 1970; 101(2):429–37.

39. Tymczyszyn E.E., Díaz M.R., Gómez-Zavaglia A., Disalvo E.A. Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose. J. Appl. Microbiol. 2007; 103(6):2410–9. DOI: 10.1111/j.1365-2672.2007.03482.x.

40. Tymczyszyn E.E., Sosa N., Gerbino E, Hugo A., Gómez-Zavaglia A., Schebor C. Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. Int. J. Food Microbiol. 2012; 155(3):217–21. DOI: 10.1016/j.ijfoodmicro.2012.02.008.

41. Yang L., Ma Y., Zhang Y. Freeze-drying of live attenuated Vibrio anguillarum mutant for vaccine preparation. Biologicals. 2007; 35:265–9. DOI: 10.1016/j.biologicals.2007.03.001.

42. ZhanY., Xu Q., Yang M.M., Yang H.T., Liu H.X., Wang Y.P., Guo J.H. Screening of freeze-dried protective agents for the formulation of biocontrol strains Bacillus cereus AR156, Burkholderia vietnamiensis B418 and Pantoea agglomerans 2Re40. Let. Appl. Microbiol. 2012; 54(1):10–7. DOI: 10.1111/j.1472-765X.2011.03165.x.

43. Zhao G., Zhang G. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freezedrying. J. Appl. Microbiol. 2005; 99(2):333–8. DOI: 10.1111/j.1365-2672.2005.02587.x.


Review

For citations:


Gracheva I.V., Osin A.V. Mechanisms of Damaging Bacteria during Lyophilization and Protective Activity of Shielding Media. Problems of Particularly Dangerous Infections. 2016;(3):5-12. (In Russ.) https://doi.org/10.21055/0370-1069-2016-3-5-12

Views: 1971


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)