MOLECULAR-BIOLOGICAL PECULIARITIES OF ARENAVIRUS REPRODUCTION IN SENSITIVE CELLS
https://doi.org/10.21055/0370-1069-2017-2-50-53
Abstract
The Arenaviridae family consists of a large group of single strand ambisense RNA viruses that are separated phylogenetically, serologically and geographically into Old World and New World viruses. Recent studies indicate that cellular entry of arenaviruses requires a series of cellular protein interaction and molecular mechanisms. The arenaviruses entry into cells is initiated by the interaction of viral glycoprotein with one or more receptors on the surface of host cells. The main host cell factors that are involved in filovirus entry are attachment factors (α-dystroglycan for Old World and human transferrin receptor 1 for New World viruses), endolisosomal host cell factors (cathepsins B and L and Niemann-Pick C1 protein). The review presents the modern knowledge about the role of structural proteins of arenaviruses and some cell factors in pathogenesis of the diseases, caused by arenaviruses.
About the Authors
T. E. SizikovaRussian Federation
V. N. Lebedev
Russian Federation
V. B. Pantyukhov
Russian Federation
A. F. Andrus
Russian Federation
S. V. Borisevich
Russian Federation
References
1. Bergthaler A., Flatz L., Hegazy A.N., Johnson S., Horvath E., Löhning M., Pinschewer D.D. Viral replicative capacity is the primary determinant of lymphocytic choriomeningitis virus persistence and immunosuppression. Proc. Natl. Acad. Sci. USA. 2010; 107(50):21641–6. DOI: 10.1073/pnas.1011998107.
2. Bieniasz P.D. Late binding domains and host protein in the envelope virus release. Virology. 2006; 344(1):55–63. DOI:10.1016/j.virol.2005.09.044.
3. Briese T., Paweska J.T., McMullan L.K. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever associated arenavirus from Southern Africa. PLoS pathogens. 2009; 5(5):1–8. DOI: 10.1371/journal.ppat.1000455.
4. Cao W., Henry M.D., Borrow P., Yamada H., Elder J.H., Ravkov E.V., Nichol S.T., Compans R.W., Campbell K.P., Oldstone M.B. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998; 282(5396):2079–81. DOI: 10.1126/science.282.5396.2079.
5. Eichler R., Lenz O., Garten W., Strecker T. The role of single N-glycans in proteolitic processing and sell surface transport of Lassa virus glycoprotein GPC. J. Virol. 2006; 3:41–50. DOI: 10.1186/1743-422x-3-41.
6. Freed E.O. Viral late domains. J. Virol. 2002; 76(10):4679–87. DOI: 10.1128/jvi.76.10.4679-4687.2002.
7. Groseth A., Hoenen T., Weber M., Wolff S., Herwig A., Kaufmann A., Becker S. Tacaribe virus but not Junin virus infection induces cytokine release from primary human monocytes and macrophages. PLoS. Negl. Trop. Dis. 2011; 5(5):1–10. DOI: 10.1371/journal.pntd.0001137.
8. Hass M., Gölnitz U., Müller S., Becker-Ziaja B., Günther S. Replicon system for Lassa virus. J. Virol. 2004; 78(24):13793–803. DOI: 10.1128/jvi.78.24.13793-13803.2004.
9. Imperiali M., Sporri R., Hewitt J., Oxenius A. Post-translational modification of alpha-dystroglycan is not critical for lymphocitic choriomeningitis virus receptor function in vivo. J. Gen. Virol. 2008; 89(11):2713–22. DOI: 10.1099/vir.0.2008/004721-0.
10. Kunz S., Sevilla N., McGavern D.B., Campbell K.P., Oldstone M.B. Molecular analysis of the interaction of LCMV with its cellular receptor alpha-dystroglycan. J. Cell. Biol. 2001; 155(2):301–10. DOI: 10.1083/jcb.200104103.
11. Kunz S., Rojek J.M., Perez M., Spiropoulou C.F., Oldstone M.B. Characterization of Lassa fever virus infection with its cellular receptor alpha-dystroglycan. J. Virol. 2005; 79(10):5979–87. DOI: 10.1128/JVI.79.10.5979-5987.2005.
12. Loureiro M.E., DʹAntuono A., Levingston J.M., Lopez N. Uncovering viral protein-protein interactions and their role in arenavirus life cicle. Viruses. 2012; 4(9):1651–67. DOI:10.3390/v4091651.
13. McLay L., Ansary A., Liang Y., Ly H. Targeting virulence mechanisms for the prevention and therapy of arenaviral hemorrhagic fever. Antiviral Res. 2013; 97(2):81–92. DOI: 10.1016/j.antiviral.2012.12.003.
14. McLay L., Lan S., Ansari A., Liang X., Ly H. Identification of virulence determinants within the L genomic segment of the Pichinde arenavirus. J. Virol. 2013; 87(12):6635–43. DOI: 10.1128/jvi.00044-13.
15. McLay L., Liang Y., Ly H. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenaviruses. J. Gen Virol. 2014; 95(1):1–15. DOI: 10.1099/vir.0.057000-0.
16. Milazzo M.L., Campbell G.L., Fulhorst C.F. Novel arenavirus infection in humans, US. Emerg. Infect. Dis. 2011; 17(8):1417– 20. DOI: 10.3201/eid1708.110285.
17. Pannetier D., Faure C., Georges-Courbot M.C., Deubel V., Baize S. Human macrophages, but not dendritic cells, are activated and produce alpha/beta interferons in response to Mopeia virus infection. J. Virol. 2004; 78(19):10516–24. DOI: 10.1128/jvi.78.19.10516-10524.2004.
18. Parsy M., Harlos K., Huiskonen J.T., Bowden T.A. Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. Virology. 2013; 87(23):13070–5. DOI: 10.1128/jvi.02298-13.
19. Radoshitzky S.R., Bào Y., Buchmeier M.J., Charrel R.N., Clawson A.N., Clegg C.S., DeRisi J.L., Emonet S., Gonzalez J.P., Kuhn J.H., Lukashevich I.S., Peters C.J., Romanowski V., Salvato M.S., Stenglein M.D., de la Torre J.C. Past, present, and future of arenavirus taxonomy. Arch. Virol. 2015; 160(7):1851–74. DOI: 10.1007/s00705-015-2418-y.
20. Radoshitzky S.R., Kuhn J.H., Spiropoulo C.F., Albariño C.G., Nguyen D.P., Salazar-Bravo J., Dorfman T., Lee A.S., Wang E., Ross S.R., Choe H., Farzan M. Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc. Natl. Acad. Sci. USA. 2008; 105(7):2664–9. DOI: 10.1073/pnas.0709254105.
21. Rojek J.M., Spiropoulou C.F., Campbell K.P., Kunz S. Old World and Clade C New World arenaviruses mimic the molecular mechanism of receptor recognition used by alpha-dystroglycans host-derived ligands. J. Virol. 2007; 81(11):5685–95. DOI: 10.1128/jvi.02574-06.
22. Rojek J.M., Campbell K.P., Oldstone M.B., Kunz S. Old World arenavirus infection interferes with the expression of functional α-dystroglycan in the host cell. Mol. Biol. Cell. 2007; 18(11):4493–507. DOI: 10.1091/mbc.E07-04-0374.
23. Shao J., Liang Y., Ly H. Human hemorrhagic fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens. 2015; 4(12):283–306. DOI: 10.3390/pathogens4020283.
24. Shattner M., Rivadeneyra L., Pozner R.G., Gomer R.M. Pathogenic mechanisms involved in the hematological alterations of arenavirus-induced hemorrhagic fevers. Viruses. 2013; 5(1):340–51. DOI:10.3390/v5010340.
25. Spiropoulou C.F., Kunz S., Rollin P.E., Campbell K.P., Oldstone M.B. New world arenavirus Clade C, but not Clade A and B viruses, utilizes alpha-dystroglycan as its major receptor. J. Virol. 2002; 76(10):5140–6. DOI: 10.1128/jvi.76.10.5140-5146.2002.
26. Tani H., Iha K., Shimojima M., Fukushi S., Taniguchi S., Yoshikawa T., Kawaoka Y., Nakasone N., Ninomiya H., Saijo M., Morikawa S. Analysis of Lujo virus cell entry using pseudotype vesicular stomatitis virus. J. Virol. 2014; 88(13):7317–30. DOI: 10.1128/jvi.00512-14.
27. Xing J., Ly H., Liang Y. The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-i-like receptor-dependent interferon production. J. Virol. 2015, 89(5):2944–55. DOI: 10.1128/jvi.03349-14.
28. Zong M., Fofana I., Choe H. Human and host species transferring receptor 1 use by North American areneviruses. J. Virol. 2014, 88:9418–28. DOI: 10.1128/jvi.01112-14.
Review
For citations:
Sizikova T.E., Lebedev V.N., Pantyukhov V.B., Andrus A.F., Borisevich S.V. MOLECULAR-BIOLOGICAL PECULIARITIES OF ARENAVIRUS REPRODUCTION IN SENSITIVE CELLS. Problems of Particularly Dangerous Infections. 2017;(2):50-53. (In Russ.) https://doi.org/10.21055/0370-1069-2017-2-50-53