Бактериальная биопленка и особенности ее образования у возбудителя чумы и других патогенных иерсиний
Аннотация
Об авторах
Л. М. КуклеваРоссия
Г. А. Ерошенко
Россия
Н. А. Видяева
Россия
В. В. Кутырев
Россия
Список литературы
1. Бибикова В.А, Классовский Л.Н. Передача чумы блохами. М.: Медицина; 1974. 187 с.
2. Ващенок В.С. Блохи - переносчики возбудителей болезней человека и животных. Л.: Наука; 1988. 163 с.
3. Величко Л.Н., Кондрашкина К.И., Ермилов А.П. и др. Экскременты блох - естественная среда долговременного хранения микроба чумы. Пробл. особо опасных инф. 1978; 6(64):51-4.
4. Видяева Н.А., Ерошенко Г.А., Шавина Н.Ю. и др. Формирование биопленки штаммами Yersinia pestis основного и неосновных подвидов и Yersinia pseudotuberculosis на модели Canorhabditis elegans. Пробл. особо опасных инф. 2009; 1(99):31-4.
5. Видяева Н.А., Ерошенко Г.А., Шавина Н.Ю. и др. Изучение способности к образованию биопленок у штаммов Yersinia pestis основного и неосновных подвидов. Журн. микробиол., эпидемиол. и иммунобиол. 2009; 5:13-19.
6. Видяева Н.А., Ерошенко Г.А., Куклева Л.М. и др. Изучение образования биопленки у штаммов Yersinia pestis, выделенных в 2009 г. в Астраханской области. Журн. микробиол., эпидемиол. и иммунобиол. 2010; 3:3-7.
7. Кутырев В.В., Проценко О.А. Классификация и молекулярно-генетические исследования Yersinia pestis. Пробл. особо опасных инф. 1998; 78:11-17.
8. Кутырев В.В., Ерошенко Г.А., Попов Н.В. и др. Молекулярные основы взаимодействия возбудителя чумы с беспозвоночными животными. Мол. генет., микробиол. и вирусол. 2009; 4:6-13.
9. Никульшин С.В., Онацкая Т.Г., Луканина Л.М. и др. Изучение ассоциаций почвенных амеб Hartmanella rhysodes с бактериями - возбудителями чумы и псевдотуберкулеза в эксперименте. Журн. микробиол., эпидемиол. и иммунобиол.1992; 9-10:2-5.
10. Achtmann M., Zurth K., Morelli G. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA. 1999; 96(24):14043-8.
11. Bobrov A., Kirillina O., Perry R. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol. Lett. 2005; 247:123-30.
12. Bobrov A., Kirillina O., Forman S. et al. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ. Microbiol. 2008; 10(6):1419-32.
13. Bobrov A., Kirillina J., Ryjenkov D. et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol. Microbiol. 2011; 79(2):533-51.
14. Bryers J. Medical biofilms. Biotechnol. Bioeng. 2008; 100(1):1-18.
15. Costerton J., Srewart P., Greenberg E. Bacterial biofilms: a common case of persistent infections. Science. 1999; 284:1318-22.
16. Cotter P., Stibitz S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 2007; 10:17-23.
17. Darby C, Hsu J, Ghori N. et al. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature. 2002; 417: 243-4.
18. Darby C., Ananth S., Tan L. et al. Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect. Immun. 2005; 73 (11): 7236-42.
19. Erickson D., Jarrett C., Wren B. et al. Serotype differences and lack biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J. Bacteriol. 2006; 188: 1113-9.
20. Eroshenko G.A., Vidyaeva N.A., Kutyrev V.V. Comparative analysis of biofilm formation by main and nonmain subspecies Yersinia pestis strains. FEMS Immunol. Med. Microbiol. 2010; 59:513-520.
21. Felek S., Lawrenz M., Krukonis E. The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiology. 2008; 154:1802-12.
22. Forman S., Bobrov A., Kirillina O. et al. Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology. 2006; 152:3399-410.
23. Grabenstein J., Fukuto Y., Palmer L. et al. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect. Immun. 2006; 74:3727-41.
24. Hall-Stoodley L., Costerton J., Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Microbiology. 2004; 2:95-108.
25. Hall-Stoodley L., Stoodley P. Evolving concepts in biofilm infections. Cel. Microbiol. 2009; 11 (7):1034-43.
26. Hinnebusch J., Perry R., Schwan T. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science. 1996; 273:367-70.
27. Hinnebusch J., Erickson D. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr. Top. Microbiol. Immunol. 2008; 322:229-48.
28. Jackson S., Burrows T. The pigmentation of Pasteurella pestis on a defined medium containing haemin. Brit. J. Exp. Pathol. 1956; 37:570-6.
29. Jarrett C., Deak E., Isherwood K. et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 2004; 190:783-92.
30. Joshua G., Karlyshev A., Smith M. et al. Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology. 2003; 149:3221-9.
31. Kim T.,Young B., Young G. Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl. Environ. Microbiol. 2008; 74(17):5466-74.
32. Kirillina O., Fetherston J., Bobrov A. et al. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol. 2004; 54(1):75-88.
33. Khweek A., Fetherston J., Perry R. Analysis of HmsH and its role in plague biofilm formation. Microbioligy. 2010, 156:1424-38.
34. Lasa I. Towards the identification of the common features of bacterial biofilm development. Intern. Microbiol. 2006; 9:21-8.
35. Lasa I., Penades J. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 2006; 157:99-107.
36. Lillard J., Fetherston J., Pedersen L. et al. Sequence and genetic analysis of the haemin storage (hms) system of Yersinia pestis. Gene. 1997; 193:13-21.
37. Monds R., O'Toole G. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 2009; 17 (2):73-87.
38. O'Toole G., Kaplan Y., Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000; 54:49-79.
39. Patel C., Wortham B., Lines J. et al. Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 2006; 188:2355-63.
40. Perry R., Bobrov A., Kirillina O. et al. Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J. Bacteriol. 2004; 186:1638-47.
41. Simm R., Fetherston J., Fader A. et al. Phenotypic convergence mediated by GGDEF-domain-containing proteins. J. Bacteriol. 2005; 187(19):6816-23.
42. Stanley N., Lazazzera B. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 2004; 52(4):917-24.
43. Stoodley P. Sauer R., Davies D. et al. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002; 56:187-209.
44. Sun Y., Hinnebusch J., Darby C. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc. Natl. Acad. Sci. USA. 2008; 105(23):8097-101.
45. Sun Y., Koumoutsi A., Darby C. The response regulator PhoP negatively regulatesYersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett. 2009; 290:85-90.
46. Tan L., Darby C. A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J. Bacteriol. 2004; 186:5087-92.
47. Tan L., Darby C. Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol. Microbiol. 2006; 61:861-70.
48. Vuong C., Kocianova S., Voyich J. et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J. Biol. Chem. 2004; 279:54881-6.
49. Wang Y., Ding L., Hu Y. et al. The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis. Sci. China. 2007; 50(6):814-21.
50. Wortham B., Oliveira M., Fetherston J. et al. Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ. Microbiol. 2010; 12(7):2034-47.
Для цитирования:
Куклева Л.М., Ерошенко Г.А., Видяева Н.А., Кутырев В.В. Бактериальная биопленка и особенности ее образования у возбудителя чумы и других патогенных иерсиний. Проблемы особо опасных инфекций. 2011;(4(110)):5-11. https://doi.org/10.21055/0370-1069-2011-4(110)-5-11
For citation:
Kukleva L.M., Eroshenko G.A., Vidyaeva N.A., Kutyrev V.V. Bacterial Biofilm and Peculiarities of Its Formation in Plague Agent and in Other Pathogenic Yersinia. Problems of Particularly Dangerous Infections. 2011;(4(110)):5-11. (In Russ.) https://doi.org/10.21055/0370-1069-2011-4(110)-5-11