Preview

Problems of Particularly Dangerous Infections

Advanced search

Bacterial Biofilm and Peculiarities of Its Formation in Plague Agent and in Other Pathogenic Yersinia

https://doi.org/10.21055/0370-1069-2011-4(110)-5-11

Abstract

This paper represents a review of the current literature data concerning general principles of bacterial biofilm formation, stages of biofilm production and its structural and functional organization, as well as the data concerning involvement of different enzyme systems with the process of biofilm functioning. Carried out is the analysis of the data on the peculiarities of biofilm formation by pathogenic Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica. Displayed are the data on the role of hmsHFRS-operon genes, located in pigmentation chromosomal region of Y. pestis, in the process of biofilm structure formation, and the data on its regulation by hmsP and hmsT genes. Summarized are the results of the recent years' investigations devoted to the genetic determinancy of the plague agent biofilm formation processes, and in particular to the involvement of genes encoding synthesis of lipopolysaccharide (waaA, yrbH and gmhA) and polyamines (speA and speC), as well as rcsA and phoP-phoQ regulatory genes with biofilm formation procedures. Represented are the results of our own investigations concerning the studies of peculiarities of biofilm formation by plague agent strains of different subspecies on the abiotic surfaces and on the nematode model - Caenorhabditis elegans. Discussed is the role of the biofilm in the complex life span of the plague agent. Noted is biofilm significance not only for facilitation in plague transmission by fleas, but also for Y. pestis preservation in the environment, out of the organism of a warm-blooded host.

About the Authors

L. M. Kukleva
Russian Research Anti-Plague Institute Microbe
Russian Federation


G. A. Eroshenko
Russian Research Anti-Plague Institute Microbe
Russian Federation


N. A. Vidyaeva
Russian Research Anti-Plague Institute Microbe
Russian Federation


V. V. Kutyrev
Russian Research Anti-Plague Institute Microbe
Russian Federation


References

1. Bibikova V.A., Klassovsky L.N. [Plague Transmission by Fleas]. M.: Meditsina; 1974. 187 p.

2. Vashchenok V.S. [Fleas – vectors of infectious agents, which cause human and animal diseases]. L.: Nauka; 1988. 163 p.

3. Velichko L.N., Kondrashkina K.I., Ermilov A.P. et al. [Flea excre- ments are the natural habitat for Y. pestis long-lasting preservation]. Probl. Osobo Opasn. Infek. 1978; 64:51–4.

4. Vidyaeva N.A., Eroshenko G.A., Shavina N. Yu., Kuznetsov O.S., Kutyrev V.V. [Biofilm formation in Yersinia pestis strains of the main and non-main subspecies and Yersinia pseudotuberculosis on the model of Caernorabditis elegans]. Probl. Osobo Opasn. Infek. 2009; 1(99):31–4.

5. Vidyaeva N.A., Eroshenko G.A., Shavina N. Yu., Konnov N.P., Kuznetsov O.S., Odinokov G.N., Kutyrev V.V. [Study of the ability to form biofilms in Yersinia pestis strains of the main and non-main subspecies]. Zh. Microbiol. Epidemiol. Immunobiol. 2009; 5:13–9.

6. Vidyaeva N.A., Eroshenko G.A., Kukleva L.M., Kuznetsov O.S., Kutyrev V.V. [Study of the process of biofilm formation in Yersinia pestis strains isolated in 2009 in the territory of the Astrakhan region]. Zh. Microbiol. Epidemiol. Immunobiol. 2010; 3:3–7.

7. Kutyrev V.V., Protsenko O.A. [Classification and molecular genetic studies of Yersinia pestis]. Probl. Osobo Opasn. Infek 1998; 78:11–7.

8. Kutyrev V.V., Eroshenko G.A., Popov N.V., Vidyaeva N.A., Konnov N.P. [Molecular basis for interaction between plague agent and invertebrate animals]. Mol. Genet. Mikrobiol. Virusol. 2009; 4:6–13.

9. Nikul’shin S.V., Onatskaya T.G., Lukanina L.M. et al. [Studies of as- sociations between soil Hartmanella rhysodes amoeba and pathogenic bacte- ria – Y. pestis, Y. pseudotuberculosis, by way of experiment]. Zh. Microbiol. Epidemiol. Immunobiol. 1992; 9–10:2–5.

10. Achtmann M., Zurth K., Morelli G. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA. 1999; 96(24):14043-8.

11. Bobrov A., Kirillina O., Perry R. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol. Lett. 2005; 247:123-30.

12. Bobrov A., Kirillina O., Forman S. et al. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ. Microbiol. 2008; 10(6):1419-32.

13. Bobrov A., Kirillina J., Ryjenkov D. et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol. Microbiol. 2011; 79(2):533-51.

14. Bryers J. Medical biofilms. Biotechnol. Bioeng. 2008; 100(1):1-18.

15. Costerton J., Srewart P., Greenberg E. Bacterial biofilms: a common case of persistent infections. Science. 1999; 284:1318-22.

16. Cotter P., Stibitz S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 2007; 10:17-23.

17. Darby C, Hsu J, Ghori N. et al. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature. 2002; 417: 243-4.

18. Darby C., Ananth S., Tan L. et al. Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect. Immun. 2005; 73 (11): 7236-42.

19. Erickson D., Jarrett C., Wren B. et al. Serotype differences and lack biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J. Bacteriol. 2006; 188: 1113-9.

20. Eroshenko G.A., Vidyaeva N.A., Kutyrev V.V. Comparative analysis of biofilm formation by main and nonmain subspecies Yersinia pestis strains. FEMS Immunol. Med. Microbiol. 2010; 59:513-520.

21. Felek S., Lawrenz M., Krukonis E. The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiology. 2008; 154:1802-12.

22. Forman S., Bobrov A., Kirillina O. et al. Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology. 2006; 152:3399-410.

23. Grabenstein J., Fukuto Y., Palmer L. et al. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect. Immun. 2006; 74:3727-41.

24. Hall-Stoodley L., Costerton J., Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Microbiology. 2004; 2:95-108.

25. Hall-Stoodley L., Stoodley P. Evolving concepts in biofilm infections. Cel. Microbiol. 2009; 11 (7):1034-43.

26. Hinnebusch J., Perry R., Schwan T. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science. 1996; 273:367-70.

27. Hinnebusch J., Erickson D. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr. Top. Microbiol. Immunol. 2008; 322:229-48.

28. Jackson S., Burrows T. The pigmentation of Pasteurella pestis on a defined medium containing haemin. Brit. J. Exp. Pathol. 1956; 37:570-6.

29. Jarrett C., Deak E., Isherwood K. et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 2004; 190:783-92.

30. Joshua G., Karlyshev A., Smith M. et al. Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology. 2003; 149:3221-9.

31. Kim T.,Young B., Young G. Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl. Environ. Microbiol. 2008; 74(17):5466-74.

32. Kirillina O., Fetherston J., Bobrov A. et al. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol. 2004; 54(1):75-88.

33. Khweek A., Fetherston J., Perry R. Analysis of HmsH and its role in plague biofilm formation. Microbioligy. 2010, 156:1424-38.

34. Lasa I. Towards the identification of the common features of bacterial biofilm development. Intern. Microbiol. 2006; 9:21-8.

35. Lasa I., Penades J. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 2006; 157:99-107.

36. Lillard J., Fetherston J., Pedersen L. et al. Sequence and genetic analysis of the haemin storage (hms) system of Yersinia pestis. Gene. 1997; 193:13-21.

37. Monds R., O'Toole G. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 2009; 17 (2):73-87.

38. O'Toole G., Kaplan Y., Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000; 54:49-79.

39. Patel C., Wortham B., Lines J. et al. Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 2006; 188:2355-63.

40. Perry R., Bobrov A., Kirillina O. et al. Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J. Bacteriol. 2004; 186:1638-47.

41. Simm R., Fetherston J., Fader A. et al. Phenotypic convergence mediated by GGDEF-domain-containing proteins. J. Bacteriol. 2005; 187(19):6816-23.

42. Stanley N., Lazazzera B. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 2004; 52(4):917-24.

43. Stoodley P. Sauer R., Davies D. et al. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002; 56:187-209.

44. Sun Y., Hinnebusch J., Darby C. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc. Natl. Acad. Sci. USA. 2008; 105(23):8097-101.

45. Sun Y., Koumoutsi A., Darby C. The response regulator PhoP negatively regulatesYersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett. 2009; 290:85-90.

46. Tan L., Darby C. A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J. Bacteriol. 2004; 186:5087-92.

47. Tan L., Darby C. Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol. Microbiol. 2006; 61:861-70.

48. Vuong C., Kocianova S., Voyich J. et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J. Biol. Chem. 2004; 279:54881-6.

49. Wang Y., Ding L., Hu Y. et al. The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis. Sci. China. 2007; 50(6):814-21.

50. Wortham B., Oliveira M., Fetherston J. et al. Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ. Microbiol. 2010; 12(7):2034-47.


Review

For citations:


Kukleva L.M., Eroshenko G.A., Vidyaeva N.A., Kutyrev V.V. Bacterial Biofilm and Peculiarities of Its Formation in Plague Agent and in Other Pathogenic Yersinia. Problems of Particularly Dangerous Infections. 2011;(4(110)):5-11. (In Russ.) https://doi.org/10.21055/0370-1069-2011-4(110)-5-11

Views: 849


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)