Строение и функциональная роль CRISPR-системы бактерий


Полный текст:


Представлен обзор литературных данных о недавно открытой системе кластрированных, равномерно удаленных друг от друга коротких палиндромных повторов, или системе CRISPR, которая участвует в защите от проникновения чужеродной генетической информации у прокариот. Описаны особенности строения и функции CRISPR, а также предполагаемый механизм действия. Также представлены данные о наличии этой системы у возбудителей особо опасных инфекций и возможности ее использования для молекулярного типирования.

Об авторах

А. В. Шашкова
Российский научно-исследовательский противочумный институт «Микроб»

А. А. Горяев
Российский научно-исследовательский противочумный институт «Микроб»

Н. И. Смирнова
Российский научно-исследовательский противочумный институт «Микроб»

Список литературы

1. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315(5819):1709-12.

2. Beloglazova N., Brown G., Zimmerman M. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 2008; 283(29):20361-71.

3. Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005; 151:2551-61.

4. Brouns S.J.J., Jore M.M., Lundgren M., Westa E.R., Slijkhuis R.J.H., Snijders A.P.L. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008; 321(5891):960-4.

5. Carte J., Wang R., Li H., Terns R.M., Terns M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 2008; 22(24):3489-96.

6. Chakraborty S., Waise T.M.Z., Hassan F., Kabir Y., Smith M.A., Arif M. Assessement of the evolutionary origin and possibility of CRISPR-Cas (CASS) mediated RNA interference pathway in Vibrio choleraе O395. In Silico Biology. 2009; 9(4):245-54.

7. Cui Y., Li Y., Gorge O., Platonov M. E., Yan Y., Guo Z. et al. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS ONE. 2008; 3(7):e2652

8. Ebihara A., Yao M., Masui R., Tanaka I., Yokoyama S., Kuramitsu S. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein. Sci. 2006; 15:1494-9.

9. Grissa I., Vergnaud G., Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007; 8:172.

10. Haft D.H., Selengut J., Mongodin E.F., Nelson K.E. A guild of 45 CRISPR-associated (CAS) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 2005; 1(6):e60.

11. Hale C.R., Zhao P., Olson S., Duff M.O., Graveley B.R., Wells L. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 2009; 139(5):945-56.

12. Han D., Krauss G. Characterisation of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett. 2009; 583:771-6.

13. Horvath P., Coute-Monvoisin A.C., Romero D.A., Boyaval P., Fremaux C., Barrangou R. Comparatve analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food. Microbiol. 2009; 1(131):62-70.

14. Hsia K.C., Li C.L., Yuan H.S. Structural and functional insight into sugar-nonspecific nucleases in host defense. Curr. Opin. Struct. Biol. 2005; 15(1):126-34.

15. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987; 169:5429-33.

16. Jansen R., Embden van J.D.A., Gaastra W., Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002; 43(6):1565-75.

17. Kamerbeek J., Schouls L., Kolk A., van Agterveld M., van Soolingen D., Kuijper S. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 1997; 35:907-14.

18. Kunin V., Sorek R., Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 2007; 8:R61.

19. Lillestøl R.K., Redder P., Garrett R.A., Brügger K. A putative viral defence mechanism in archaeal cells. Archaea. 2006; 2:59-72.

20. Makarova K.S., Aravind L., Grishin N.V., Rogosin I.B., Koonin E.V. A DNA repair system specific for thermofilic Archaea and bacteria predicted by genomic context analysis. Nucl. Acid Res. 2002; 30:482-96.

21. Makarova K.S., Grishin N.V., Shabalina S.A., Wolf Y.I., Koonin E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic maschinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology direct. 2006; 1:7.

22. Maraffini L., Sontheimer E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature. 2010; 463(1):568-72.

23. Mojica F.J., Diez-Villasenor C., Soria E., Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 2000; 36:244-6.

24. Mojica F.J., Diez-Villasenor C., Garcia-Martinez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005; 60:174-82.

25. Mojica F.J., Diez-Villasenor C., Garcia-Martines J., Almedros C. Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology. 2009; 155(3):733-40.

26. Oost van der J., Jore M.M., Westa E.R., Lundgren M., Brouns S.J.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences. 2009; 34(8): 401-7.

27. Pourcel C., Salvignol G., Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005; 151(3):653-63.

28. Sorek R, Kunin V., Hungenholtz P. CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archae. Nat. Rev. Microbiol. 2008; 3(6):181-6.

29. Sturino J.M., Klaenhammer T.R. Engineered bacteriofage-defence systems in bioprocessing. 2006; 4:395-404.

30. Vergnaud G., Li Y., Gorge O., Song Y., Zhou D., Grissa I. et al. Analysis of the three Yersinia pestis CRISPR loci provides new tools for the investigation of ancient DNA. Adv. Exp. Med. Biol. 2007; 603:327-38.

31. Wiedenheft B., Zhou K., Jinek M., Coyle S., Ma W., Doudna J.A. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure. 2009;17(10):904-12.

Дополнительные файлы

Для цитирования: Шашкова А.В., Горяев А.А., Смирнова Н.И. Строение и функциональная роль CRISPR-системы бактерий. Проблемы особо опасных инфекций. 2011;(2(108)):49-52. https://doi.org/10.21055/0370-1069-2011-2(108)-49-52

For citation: Shashkova A.V., Goryaev A.A., Smirnova N.I. Structure and Functional Role of Bacterial CRISPR System. Problems of Particularly Dangerous Infections. 2011;(2(108)):49-52. (In Russ.) https://doi.org/10.21055/0370-1069-2011-2(108)-49-52

Просмотров: 38

Обратные ссылки

  • Обратные ссылки не определены.

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 0370-1069 (Print)