Применение методов спектроскопии для индикации и идентификации патогенных биологических агентов


https://doi.org/10.21055/0370-1069-2011-2(108)-68-71

Полный текст:


Аннотация

В обзоре представлены данные о применении методов УФ спектроскопии, спектроскопии в видимом диапазоне, ИК спектроскопии при проведении неспецифической индикации патогенных биологических агентов; ИК Фурье спектроскопии, Раман спектроскопии при их идентификации. Рассмотрены преимущества, недостатки и перспективы использования различных методов спектроскопии при мониторинге окружающей среды на наличие патогенных биологических агентов.

Об авторах

Д. В. Уткин
Российский научно-исследовательский противочумный институт «Микроб»
Россия


В. Е. Куклев
Российский научно-исследовательский противочумный институт «Микроб»
Россия


П. С. Ерохин
Российский научно-исследовательский противочумный институт «Микроб»
Россия


Н. А. Осина
Российский научно-исследовательский противочумный институт «Микроб»
Россия


Список литературы

1. Злобин В.И., Евстигнеев В.И. Специфическая и неспецифическая индикация микроорганизмов в окружающей среде. Вест. Рос. АМН. 2002;11:37-42.

2. Практическое пособие для подготовки врачей-бактериологов и эпидемиологов по вопросам противодействия биотерроризму. Волгоград; 2004. 233 с.

3. Сквиррелл Д.Д. Способ и устройство для определения присутствия и/или количества клеточного материала в газовой среде. Патент РФ № 2142016, опубл. 27.11.1999.

4. Agranovski V., Ristovski Z.D., Hargreaves M., Blackall P. J., Morawska L. Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation. J. Aerosol Sci. 2002; 34:301-17.

5. Aziz M.A., Kholy A.E. Laser-Raman spectroscopy: a novel approach for sensitive molecular characterization of the Mycobacterium genomic DNAs. Arab. J. Biotech. 2006; 9(3):453-66.

6. Baena J.R., Lendl B. Raman spectroscopy in chemical bioanalysis. Curr. Opin. Chem. Biol. 2004; 8:534-9.

7. Beekes M., Lasch P., Naumann D. Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Vet. Microbiol. 2007; 123(4):305-19.

8. Bell S.E.J., Mackle J.N., Sirumithu N.M.S. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid-towards rapid anthrax endospore detection. Analyst. 2005; 130:545-9.

9. Buijtels P.C.A.M., Willemse-Erix H.F.M., Petit P.L.C., Endtz H.P., Puppels G.J., Verbrugh H.A. et al. Rapid Identification of Mycobacteria by Raman Spectroscopy. J. Clin. Microbiol. 2008; 46(3):961-5.

10. Cutler C.N., Dorsa W.J., Sirogusa G.R. A rapid microbial ATP bioluminescence assay for meat carcasses. Dairy Food Environ. Sanit. 1996; 16:726-36.

11. Esposito A.P., Talley C.E., Huser T., Hollars C.W., Schaldach C.M., Lane S.M. Analysis of single bacterial spores by micro-Raman spectroscopy. Appl. Spectrosc. 2003; 57:868-71.

12. Farquharson S., Grigely L., Khitrov V., Smith W., Sperry J.F., Fenerty G. Detecting Bacillus cereus spores on a mail sorting system using Raman spectroscopy. J. Raman Spectr. 2004; 35:82-6.

13. Fatah A.A., Arcilesi R.D., Chekol T., Lattin C.H., Sadik O., Aluoch A. Guide 101-06 for the Selection of Biological Agent Detection Equipment for Emergency First Responders. 2nd ed. 2007.

14. Fatah A.A., Barrett J.A., Arcilesi R.D., Ewing K.J., Lattin C.H., Moshier T.F. An Introduction to Biological Agent Detection Equipment for Emergency First Responders. NIJ Guide 101-00. 2001. 53 p.

15. Gómez M.A. Miguel, Pérez M.A. Bratos, Gil F.J. Martín, Díez A. Dueñas, Rodríguez J.F. Martín, Rodríguez P. Gutiérrez et al. Identification of species of Brucella using Fourier transform infrared spectroscopy. J. Microbiol. Methods. 2003; 55(1):121-31.

16. Grow A.E., Wood L.L., Claycomb J.L., Thompson P.A. New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods. 2003; 53:221-33.

17. Jeys T.H., Herzog W.D., Hybl J.D., Czerwinski R.N., Sanchez A. Advanced Trigger Development. Lincoln Laboratory Journal. 2007;17(1):29-62.

18. Kuhm A.E., Suter D., Felleisen R., Rau J. Identification of Yersinia enterocolitica at the Species and Subspecies Levels by Fourier Transform Infrared Spectroscopy. Appl. Environ. Microbiol. 2009; 75(18):5809-13.

19. Lambert P.J., Whitman A.G., Dyson O.F., Akula S.M. Raman spectroscopy: the gateway into tomorrow's virology. Virol. J. 2006; 3:51.

20. Lee J., Deininger R.A. A rapid screening method for the detection of viable spores in powder using bioluminescence. Luminescence. 2004; 19:209-11.

21. Lim D.V., Simpson J.M., Kearns E.A., Kramer M.F. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 2005; 18(4):583-607.

22. López-Díez E.C, Goodacre R. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Anal. Chem. 2004; 76(3):585-91.

23. Preisner O, Lopes J.A., Guiomar R., Machado J., Menezes J.C. Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination. Anal. Bioanal. Chem. 2007; 387(5):1739-48.

24. Rabia D., Abubakar M., Javed A.M., Shamim S., Irfan U., Qyrban A. Biological characterization and protein profiles of two model bacteria by SDS-page and FT-IR», ARPN J. Agricult. Biol. Sci. 2008; 3(5-6):6-16.

25. Rebuffo C.A., Schmitt J., Wenning M., von Stetten F., Scherer S. Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy. Appl. Environ. Microbiol. 2006; 72:994-1000.

26. Rebuffo-Scheer C.A., Schmitt J., Scherer S. Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of Fourier-transformed infrared spectra. Appl. Environ. Microbiol. 2007; 73:1036-40.

27. Rodriguez-Saona L.E., Khambaty F.M., Fry F.S., Dubois J., Calvey E.M. Detection and identification of bacteria in a juice matrix with Fourier transform-near infrared spectroscopy and multivariate analysis. J. Food Prot. 2004; 67(11):2555-9.

28. Sivaprakasam V., Huston A.L., Scotto C., Eversole J.D. Multiple UV wavelength excitation and fluorescence of bioaerosols. Optics Express. 2004; 12(19):4457-66.

29. Stopa P.J., Tieman D., Coon P.A., Milton M.M., Paterno D. Detection of biological aerosols by luminescence techniques. Field Anal. Chem. Technol. 1999; 3:283-90.

30. Wenning M., Seiler H., Scherer S. Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl. Environ. Microbiol. 2002; 68:4717-21.

31. Yalçin Duygu D., Baycal T., Açikgöz İ., Yildiz K. Fourier Transform Infrared (FT-IR) Spectroscopy for Biological Studies. G.U. Journal of Science. 2009; 22(3):117-21.

32. Zhang X., Yonzon C.R., Van Duyne R.P. An electrochemical surface-enhanced Raman spectroscopy approach to anthrax detection. Proc. SPIE. 2003; 5221:82-91.

33. Zhang X., Young M.A., Lyandres O., Van Duyne R.P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005; 127:4484-9.


Дополнительные файлы

Для цитирования: Уткин Д.В., Куклев В.Е., Ерохин П.С., Осина Н.А. Применение методов спектроскопии для индикации и идентификации патогенных биологических агентов. Проблемы особо опасных инфекций. 2011;(2(108)):68-71. https://doi.org/10.21055/0370-1069-2011-2(108)-68-71

For citation: Utkin D.V., Kouklev V.E., Erokhin P.S., Ossina N.A. Application of Spectroscopy Methods for Indication and Identification of Pathogenic Biological Agents. Problems of Particularly Dangerous Infections. 2011;(2(108)):68-71. (In Russ.) https://doi.org/10.21055/0370-1069-2011-2(108)-68-71

Просмотров: 37

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)