Preview

Проблемы особо опасных инфекций

Расширенный поиск

Лихорадка Зика: разработка средств диагностики, профилактики и лечения

https://doi.org/10.21055/0370-1069-2019-2-6-13

Полный текст:

Аннотация

Обзор посвящен анализу литературных данных о разрабатываемых средствах диагностики лихорадки Зика и выявления этиологического агента – вируса Зика (ZIKV), относящегося к семейству флавивирусов (Flaviviridae). Рассмотрены также варианты профилактических вакцин и противовирусных препаратов. Метод ОТ-ПЦР имеет решающее значение для подтверждения диагноза лихорадки Зика. РНК ZIKV может быть обнаружена в сыворотке крови, слюне, амниотической и цереброспинальной жидкостях, моче, сперме, вагинальных и цервикальных выделениях. Виремия при лихорадке Зика непродолжительная, в связи с чем присутствие РНК ZIKV в моче и в сперме до 26 и 80 сут соответственно расширяет временной интервал обнаружения этого патогена. Выявление антител класса IgM серологическими методами не является достаточным основанием для подтверждения недавней инфекции, так как антитела этого класса, специфичные к флавивирусам, циркулируют в кровотоке более 12 недель. Диагностическую ценность IgM имеют только для подтверждения врожденной инфекции. Существует проблема дифференциальной диагностики флавивирусных инфекций, вызываемых опасными для человека антигенно-родственными вирусами (например, денге, желтой лихорадки, лихорадки Западного Нила, клещевого и японского энцефалитов) из-за подобия их геномов и, соответственно, схожей антигенной структуры вирусных белков, особенно структурного гликопротеина Е. Более надежные результаты можно получить, используя в качестве антигена для выявления специфических антител неструктурный гликопротеин NS1, полученный методами молекулярной биологии. Этот вирусный белок также может быть использован в серологических тестах в качестве клинического индикатора при острой ЛЗ. При конструировании и исследовании 45 видов кандидатных вакцин (инактивированных, живых аттенуированных, рекомбинантных пептидных, на основе рекомбинантных ДНК и РНК, вирус-векторных и вирусоподобных частиц) против ZIKV установлено, что их защитная эффективность опосредуется индуцированными антителами, специфичными к структурному гликопротеину Е, который инициирует рецепторное связывание и слияние с мембранами инфицируемых клеток. В настоящее время нет ни одного лицензированного средства для лечения пациентов с флавивирусными инфекциями. Ведется скрининг различных препаратов с известной антивирусной активностью и одобренных для применения в клинической практике и поиск новых соединений, ингибирующих проникновение вирусных частиц в клетки хозяина (мишень – структурный гликопротеин Е) и репликацию вируса (мишени – неструктурные белки NS5, NS3, NS2B).

Об авторах

Е. И. Казачинская
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор»
Россия

630559, Новосибирская обл., р.п. Кольцово



Д. В. Шаньшин
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор»
Россия
630559, Новосибирская обл., р.п. Кольцово


А. В. Иванова
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор»
Россия
630559, Новосибирская обл., р.п. Кольцово


Список литературы

1. Yun S.I., Lee Y.M. Zika virus: An emerging flavivirus. J. Microbiol. 2017; 55(3):204–19. DOI: 10.1007/s12275-017-7063-6.

2. Liang H., Yang R., Liu Z., Li M., Liu H., Jin X. Recombinant Zika virus envelope protein elicited protective immunity against Zika virus immunocompetent mice. PLoS One. 2018; 13(3):e0194860. DOI: 10.1371/journal.pone.0194860.

3. Dick G.W., Kitchen S.F., Haddow A.J. Zika virus. I. Isolations and serologicalspecificity. Trans. R. Soc. Trop. Med. Hyg. 1952; 46(5):509–20. DOI: 10.1016/0035-9203(52)90042-4.

4. Sikka V., Chattu V.K., Popli R.K., Galwankar S.C., Kelkar D., Sawicki S.G., Stawicki S.P, Papadimos TJ. The Emergence of Zika Virus as a Global Health Security Threat: A Review and a Consensus Statement of the INDUSEM Joint working Group (JWG). J. Glob. Infect. Dis. 2016; 8(1):3–15. DOI: 10.4103/0974-777X.176140.

5. Waggoner J.J., Pinsky B.A. Zika Virus: Diagnostics for an Emerging Pandemic Threat. J. Clin. Microbiol. 2016; 54(4):860–7. DOI: 10.1128/JCM.00279-16.

6. Kim Y.H., Lee J., Kim Y.E., Chong C.K., Pinchemel Y., Reisdörfer F., Coelho J.B., Dias R.F., Bae P.K., Gusmão Z.P.M., Ahn H.J., Nam H.W. Development of a Rapid Diagnostic Test Kit to Detect IgG/IgM Antibody against Zika Virus Using Monoclonal Antibodies to the Envelope and Non-structural Protein 1 of the Virus. Korean J. Parasitol. 2018; 56(1):61–70. DOI: 10.3347/kjp.2018.56.1.61.

7. D’Ortenzio E., Matheron S., Yazdanpanah Y., de Lamballerie X., Hubert B., Piorkowski G., Maquart M., Descamps D., Damond F., Leparc-Goffart I. Evidence of Sexual Transmission of Zika Virus. N. Engl. J. Med. 2016; 374(22):2195–8. DOI: 10.1056/NEJMc1604449.

8. Wahid B., Ali A., Rafique S., Idrees M. Current status of therapeutic and vaccine approaches against Zika virus. Eur. J. Intern. Med. 2017; 44:12–8. DOI: 10.1016/j.ejim.2017.08.001.

9. Schwartzmann P.V., Ramalho L.N., Neder L., Vilar F.C., Ayub-Ferreira S.M., Romeiro M.F., Takayanagui O.M., Dos Santos A.C., Schmidt A., Figueiredo L.T., Arena R., Simões M.V. Zika Virus Meningoencephalitis in an Immunocompromised Patient. Mayo Clin. Proc. 2017; 92(3):460–6. DOI: 10.1016/j.mayocp.2016.12.019.

10. Попова А.Ю., Ежлова Е.Б., Демина Ю.В., Топорков А.В., Викторов Д.В., Смелянский, В.П., Жуков К.В., Бородай Н.В., Шпак И.М., Куличенко А.Н., Михеев В.Н., Малеев В.В., Шипулин А.Г. Лихорадка Зика состояние проблемы на современном этапе. Проблемы особо опасных инфекций. 2016; 1:5–12. DOI: 10.21055/0370-1069-2016-1-5-12.

11. Ventura C.V., Maia M., Travassos S.B., Martins T.T., Patriota F., Nunes M.E., Agra C., Torres V.L., van der Linden V., Ramos R.C., Rocha M.Â., Silva P.S., Ventura L.O., Belfort R. Jr. Risk Factors Associated With the Ophthalmoscopic Findings Identified in Infants With Presumed Zika Virus Congenital Infection. JAMA Ophthalmol. 2016; 134(8):912–8. DOI: 10.1001/jamaophthalmol.2016.1784.

12. Torales J., Barrios I. The Zika virus beyond microcephaly: will we face an increase in mental disorders? Medwave. 2017; 17(1):e6869. DOI: 10.5867/medwave.2017.01.6869.

13. Andrade D.V., Harris E. Recent advances in understanding the adaptive immune response to Zika virus and the effect of previous flavivirus exposure. Virus Res. 2018; 254:27–33. DOI: 10.1016/j.virusres.2017.06.019.

14. Chan J.F., Yip C.C., Tsang J.O., Tee K.M., Cai J.P., Chik K.K., Zhu Z., Chan C.C., Choi G.K., Sridhar S., Zhang A.J., Lu G., Chiu K., Lo A.C., Tsao S.W., Kok K.H., Jin D.Y., Chan K.H., Yuen K.Y. Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs. Emerg. Microbes Infect. 2016; 5:e93. DOI: 10.1038/emi.2016.99.

15. Singh R.K., Dhama K., Karthik K., Tiwari R., Khandia R., Munjal A., Iqbal H.M.N., MalikY.S., Bueno-Marí R. Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update. Front Microbiol. 2018; 8:2677. DOI: 10.3389/fmicb.2017.02677.

16. Saiz J.C., Martín-Acebes M.A. The Race To Find Antivirals for Zika Virus. Antimicrob Agents Chemother. 2017; 61(6). pii: e00411–17. DOI: 10.1128/AAC.00411-17.

17. Венгеров Ю.Я., Парфенова О.В. Лихорадка Зика (обзор литературы). Лечащий врач. 2016; 3:73–6.

18. Koishi A.C., Suzukawa A.A., Zanluca C., Camacho D.E., Comach G., Duarte Dos Santos C.N. Development and evaluation of a novel high-throughput image-based fluorescent neutralization test for detection of Zika virus infection. PLoS Negl. Trop. Dis. 2018; 12(3):e0006342. DOI: 10.1371/journal.pntd.0006342.

19. Nicastri E., Castilletti C., Balestra P., Galgani S., Ippolito G. Zika Virus Infection in the Central Nervous System and Female Genital Tract. Emerg. Infect. Dis. 2016; 22(12):2228–30. DOI: 10.3201/eid2212.161280.

20. Rossini G., Gaibani P., Vocale C., Cagarelli R., Landini M.P. Comparison of Zika virus (ZIKV) RNA detection in plasma, whole blood and urine – Case series of travel-associated ZIKV infection imported to Italy, 2016. J. Infect. 2017; 75(3):242–5. DOI: 10.1016/j.jinf.2017.05.021.

21. Paz-Bailey G., Rosenberg E.S., Doyle K., Munoz-Jordan J., Santiago G.A., Klein L., Perez Padilla J., Medina F.A., Waterman S.H., Gubern C.G., Alvarado L.I., Sharp T.M. Persistence of Zika Virus in Body Fluids – Preliminary Report. N. Engl. J. Med. 2018; 379(13):1234–43. DOI: 10.1056/NEJMoa1613108.

22. Cordeiro M.T., Brito C.A., Pena L.J., Castanha P.M., Gil L.H., Lopes K.G., Dhalia R., Meneses J.A., Ishigami A.C., Mello L.M., Alencar L.X., Guarines K.M., Rodrigues L.C., Marques E.T. Results of a Zika Virus (ZIKV) Immunoglobulin M-Specific Diagnostic Assay Are Highly Correlated With Detection of Neutralizing AntiZIKV Antibodies in Neonates With Congenital Disease. J. Infect Dis. 2016; 214(12):1897–904. DOI: 10.1093/infdis/jiw477.

23. Priyamvada L., Quicke K.M., Hudson W.H., Onlamoon N., Sewatanon J., Edupuganti S., Pattanapanyasat K., Chokephaibulkit K., Mulligan M.J., Wilson P.C., Ahmed R., Suthar M.S., Wrammert J. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc. Natl. Acad. Sci. USA. 2016; 113(28):7852–7. DOI: 10.1073/pnas.1607931113.

24. Duehr J., Lee S., Singh G., Foster G.A., Krysztof D., Stramer S.L., Bermúdez González M.C., Menichetti E., Geretschläger R., Gabriel C., Simon V., Lim J.K., Krammer F. Tick-borne encephalitis virus vaccine-induced human antibodies mediate negligible enhancement of Zika virus infection in vitro and in a mouse model. mSphere. 2018; 3(1):e00011–18. DOI: 10.1128/mSphereDirect.00011-18.

25. Safronetz D., Sloan A., Stein D.R., Mendoza E., Barairo N., Ranadheera C., Scharikow L., Holloway K., Robinson A., TraykovaAndonova M., Makowski K., Dimitrova K., Giles E., Hiebert J., Mogk R., Beddome S., Drebot M. Evaluation of 5 Commercially Available Zika Virus Immunoassays. Emerg. Infect. Dis. 2017; 23(9):1577–80. DOI: 10.3201/eid2309.162043.

26. Wong S.J., Furuya A., Zou J., Xie X., Dupuis A.P. 2nd, Kramer L.D., Shi P.Y. A Multiplex Microsphere Immunoassay for Zika Virus Diagnosis. EBioMedicine. 2017; 16:136–40. DOI: 10.1016/j.ebiom.2017.01.008.

27. Lee K.H., Zeng H. Aptamer-Based ELISA Assay for Highly Specific and Sensitive Detection of Zika NS1 Protein. Anal. Chem. 2017; 89(23):12743–8. DOI: 10.1021/acs.analchem.7b02862.

28. Du L., Zhou Y., Jiang S. The latest advancements in Zika virus vaccine development. Expert. Rev. Vaccines. 2017; 16(10):951–4. DOI: 10.1080/14760584.2017.1363648.

29. Pardy R.D., Rajah M.M., Condotta S.A, Taylor N.G., Sagan S.M., Richer M.J. Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice. PLoS Pathog. 2017; 13(2):e1006184. DOI: 10.1371/journal. ppat.1006184.

30. Durbin A., Wilder-Smith A. An update on Zika vaccine developments. Expert. Rev. Vaccines. 2017; 16(8):781–7. DOI: 10.1080/14760584.2017.1345309.

31. Larocca R.A., Abbink P., Peron J.P., Zanotto P.M., Iampietro M.J., Badamchi-Zadeh A., Boyd M., Ng’ang’a D., Kirilova M., Nityanandam R., Mercado N.B., Li Z., Moseley E.T., Bricault C.A., Borducchi E.N., Giglio P.B., Jetton D., Neubauer G., Nkolola J.P., Maxfield L.F., De La Barrera R.A., Jarman R.G., Eckels K.H., Michael N.L., Thomas S.J., Barouch D.H. Vaccine protection against Zika virus from Brazil. Nature. 2016; 536(7617):474–8. DOI: 10.1038/nature18952.

32. Shan C., Muruato A.E., Nunes B.T.D., Luo H., Xie X., Medeiros D.B.A., Wakamiya M., Tesh R.B., Barrett A.D., Wang T., Weaver S.C., Vasconcelos P.F.C., Rossi S.L., Shi P.Y. A liveattenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 2017; 23(6):763–7. DOI: 10.1038/nm.4322.

33. Tsetsarkin K.A., Kenney H., Chen R., Liu G., Manukyan H., Whitehead S.S., Laassri M., Chumakov K., Pletnev A.G. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. mBio. 2016; 7(4):e01114–16. DOI: 10.1128/mBio.01114-16.

34. Abbink P., Larocca R.A., De La Barrera R.A., Bricault C.A., Moseley E.T., Boyd M., Kirilova M., Li Z., Ng’ang’a D., Nanayakkara O., Nityanandam R., Mercado N.B., Borducchi E.N., Agarwal A., Brinkman A.L., Cabral C., Chandrashekar A., Giglio P.B., Jetton D., Jimenez J., Lee B.C., Mojta S., Molloy K., Shetty M., Neubauer G.H., Stephenson K.E., Peron J.P., Zanotto P.M., Misamore J., Finneyfrock B., Lewis M.G., Alter G., Modjarrad K., Jarman R.G., Eckels K.H., Michael N.L., Thomas S.J., Barouch D.H. Protective efficacy of multiple vaccine plat forms against Zika virus challenge in rhesus monkeys. Science. 2016; 353(6304):1129–32. DOI: 10.1126/science.aah6157.

35. Garg H., Sedano M., Plata G., Punke E.B., Joshi A. Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus. J. Virol. 2017; 91(20):e00834-17. DOI: 10.1128/ JVI.00834-17.

36. Basu R., Zhai L., Contreras A., Tumban E. Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells. Vaccine. 2018; 36(10):1256–64. DOI: 10.1016/j.vaccine.2018.01.056.

37. Muthumani K., Griffin B.D., Agarwal S., Kudchodkar S.B., Reuschel E.L., Choi H., Kraynyak K.A., Duperret E.K., Keaton A.A., Chung C., Kim Y.K., Booth S.A., Racine T., Yan J., Morrow M.P., Jiang J., Lee B., Ramos S., Broderick K.E., Reed C.C., Khan A.S., Humeau L., Ugen K.E., Park Y.K., Maslow J.N., Sardesai N.Y., Joseph Kim J., Kobinger G.P., Weiner D.B. In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. NPJ Vaccines. 2016; 1:16021. DOI: 10.1038/npjvaccines.2016.21.

38. Li X.F., Dong H.L., Wang H.J., Huang X.Y., Qiu Y.F., Ji X., Ye Q., Li C., Liu Y., Deng Y.Q., Jiang T., Cheng G., Zhang F.C., Davidson A.D., Song Y.J., Shi P.Y., Qin C.F. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat. Commun. 2018; 9(1): 673. DOI: 10.1038/ s41467-018-02975-w.

39. Richner J.M., Himansu S., Dowd K.A., Butler S.L., Salazar V., Fox J.M., Julander J.G., Tang W.W., Shresta S., Pierson T.C., Ciaramella G., Diamond M.S. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell. 2017; 169(1):176. DOI: 10.1016/j. cell.2017.03.016.

40. Ramharack P., Soliman M.E.S. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery. J. Biomol. Struct. Dyn. 2018; 36(5):1118–33. DOI: 10.1080/07391102.2017.1313175.

41. Mottin M., Braga R.C., da Silva R.A., Silva J.H.M.D., Perryman A.L., Ekins S., Andrade C.H. Molecular dynamics simulations of Zika virus NS3 helicase: Insights into RNA binding site activity. Biochem. Biophys. Res. Commun. 2017; 492(4):643–51. DOI: 10.1016/j.bbrc.2017.03.070.

42. Kang C., Keller T.H., Luo D. Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol. 2017. 25(10):797–808. DOI: 10.1016/j.tim.2017.07.001.

43. Zmurko J., Marques R.E., Schols D., Verbeken E., Kaptein S.J., Neyts J. The Viral Polymerase Inhibitor 7-Deaza-2’-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease Progression in a Robust Mouse Infection Model. PLoS Negl. Trop. Dis. 2016; 10(5):e0004695. DOI: 10.1371/journal. pntd.0004695.

44. Bullard-Feibelman K.M., Govero J., Zhu Z., Salazar V., Veselinovic M., Diamond M.S., Geiss B.J. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral. Res. 2017; 137: 134–40. DOI: 10.1016/j.antiviral.2016.11.023.

45. Li Z., Brecher M., Deng Y.Q., Zhang J., Sakamuru S., Liu B., Huang R., Koetzner C.A., Allen C.A., Jones S.A., Chen H., Zhang N.N., Tian M., Gao F., Lin Q., Banavali N., Zhou J., Boles N., Xia M., Kramer L.D., Qin C.F., Li H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res. 2017; 27(8):1046–64. DOI: 10.1038/cr.2017.88.

46. Delvecchio R., Higa L.M., Pezzuto P., Valadão A.L., Garcez P.P., Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O’Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses. 2016. 8(12): pii: E322. DOI: 10.3390/v8120322.

47. Kuivanen S., Bespalov M.M., Nandania J., Ianevski A., Velagapudi V., De Brabander J.K., Kainov D.E., Vapalahti O. Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Res. 2017; 139:117–28. DOI: 10.1016/j.antiviral.2016.12.022.

48. Carneiro B.M., Batista M.N., Braga A.C.S., Nogueira M.L., Rahal P. The green tea molecule EGCG inhibits Zika virus entry. Virology. 2016; 496:215–18. DOI: 10.1016/j.virol.2016.06.012.

49. Wang S., Hong S., Deng Y.Q., Ye Q., Zhao L.Z., Zhang F.C., Qin C.F., Xu Z. Transfer of convalescent serum to pregnant mice prevents Zika virus infection and microcephaly in offspring. Cell Res. 2017; 27(1):158–60. DOI: 10.1038/cr.2016.144.

50. Sapparapu G., Fernandez E., Kose N., Bin Cao, Fox J.M., Bombardi R.G., Zhao H., Nelson C.A., Bryan A.L., Barnes T., Davidson E., Mysorekar I.U., Fremont D.H., Doranz B.J., Diamond M.S., Crowe J.E. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature. 2016; 540(7633):443–7. DOI: 10.1038/nature20564.


Для цитирования:


Казачинская Е.И., Шаньшин Д.В., Иванова А.В. Лихорадка Зика: разработка средств диагностики, профилактики и лечения. Проблемы особо опасных инфекций. 2019;(2):6-13. https://doi.org/10.21055/0370-1069-2019-2-6-13

For citation:


Kazachinskaya E.I., Shan’shin D.V., Ivanova A.V. Zika Fever: Development of Diagnostics, Prevention and Treatment. Problems of Particularly Dangerous Infections. 2019;(2):6-13. (In Russ.) https://doi.org/10.21055/0370-1069-2019-2-6-13

Просмотров: 103


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)