Preview

Problems of Particularly Dangerous Infections

Advanced search

Chikungunya Virus as the Agent of Emergent Viral Disease

https://doi.org/10.21055/0370-1069-2019-3-26-33

Abstract

Chikungunya virus belongs to Alphavirus genus of the Togaviridae family. It is a member of Semliki Forest virus antigenic complex that includes antigenic related Semliki Forest, Chikungunya, O’ Nyong-nyong, Ross River viruses. Chikungunya virus is the causative agent of acute febrile illness with myalgia and arthralgia in humans. Since its discovery in 1952, Chikungunya virus caused sporadic and infrequent outbreaks. Since 2004, global Chikungunya outbreaks have occurred. Now Chikungunya is viewed as a global public health issue in many countries, where Aedes mosquito vectors are widespread. Currently, four genotypes of Chikungunya virus (West African, South African, Asian and Indian Ocean) are distinguished. Appearance of different genotypes is associated with adaptive mutations in peplomers of E1 and E2 glycoproteins. It is shown, that a single mutation in E1 glycoprotein (alanin for valin substitution in 226 position) leads to increasing virus virulence (50-100 times). This mutation is instrumental for epidemic potential increase. For virus variants with this mutation, secondary substitutions enhancing viral virulence are described too. Аedes aegypti mosquitoes are common vector for all genotypes of Chikungunya virus, Аedes albopictus mosquitoes are vector, mainly, for South African and Asian genotypes. They play the leading role in epidemic potential increase over the last decade. The effectiveness of Chikungunya virus transmission by Аedes аegypti mosquitoes is 83.3 %, by Аedes albopictus mosquitoes - 96.7 %. The Аedes albopictus are more widely disseminated than Аedes аegypti (about 40 percent of all land territory). Demonstrated is the possibility of transcontinental spread of Аedes albopictus mosquitoes by aviation and naval transport. This review highlights the most recent advances in our knowledge of the ecology, epidemiology and molecular biology of Chikungunya virus. These data play an important role in the development of preventive, treatment and vaccination strategies of Chikungunya fever.

About the Authors

T. E. Sizikova
48th Central Research Institute» of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, 141306.



R. V. Sakharov
48th Central Research Institute» of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, 141306.



M. N. Pistsov
48th Central Research Institute» of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, 141306.



Yu. I. Pashchenko
48th Central Research Institute» of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, 141306.



V. N. Lebedev
48th Central Research Institute» of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, 141306.



S. V. Borisevich
48th Central Research Institute» of the Ministry of Defense of the Russian Federation
Russian Federation

Sergiev Possad, 141306.



References

1. Zouache K., Failloux A. Insect-pathogen interactions: contribution of viral adaptation to the emergence of vector-borne diseases, the example of Chikungunya. Curr. Opin. Insect Sci. 2015; 10:14-21. DOI: 10.1016/j.cois.2015.04.010.

2. Seymour R.L., Adams A.P, Leal G., Alcorn M.D., Weaver S.C. A rodent model of Chikungunya virus infection in RAG1-/-mice, with features of persistence, for vaccine safety evaluation. PLoS Negl. Trop. Dis. 2015; 9(6):e000380. DOI: 10.1371/journal.pntd.0003800.

3. Couderc T., Lecuit M. Chikungunya virus pathogenesis: From bedside to bench. Antiviral. Res. 2015; 121:120-31. DOI: 10.4269/ajtmh.2011.10-0725.

4. Foissac M., Javelle E., Ray S., Guerin B., Simon F. Post-Chikungunya rheumatoid arthritis, Saint Martin. Emerg. Infect. Dis. 2015; 21(3):530-2. DOI: 10.3201/eid2103.141397.

5. Van Dunl-Richter M.K., Hoornweg T.E., Rodenhuis-Zybert I.A., Smit J.M. Early Events in Chikungunya Virus Infection-From Virus Cell Binding to Membrane Fusion. Viruses. 2015; 7(7):3647-74. DOI: 10.3390A7072792.

6. The Togaviridae and Flaviviridae. N.Y: Plenum Press; 1986. P. 265-72.

7. Sun S., Xiang Y., Akahata W., Holdaway H., Pal P., Zhang X., Diamond M.S., Nabel G.J., Rossman M.G. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife. 2013; 2:e00435. DOI: 10.7554/eLife.00435.

8. Weaver S.C., Forrester N.L. Chikungunya: Evolutionary history and recent epidemic spread. Antiviral Res. 2015; 120:32-9. DOI: 10.1016/j.antiviral.2015.04.016.

9. Miller M.J., Loaiza J.R. Geographic expansion of the invasive mosquito Aedes albopictus across Panama - implications for control of dengue and Chikungunya viruses. PLoS Negl. Trop. Dis. 2015; 9(1):e000338. DOI: 10.1371/journal.pntd.0003383.

10. Acharya D., Paul A.M., Anderson J.F., Huang F., Bai F. Loss of glycosaminoglycan receptor binding after mosquito cell pas-sage reduces Chikungunya virus infectivity. PLoS Negl. Trop. Dis. 2015; 9(10):e0004139. DOI: 10.1371/journal.pntd.0004139.

11. Bordi L., Caglioti C., Lalle E., Castilletti C., Capobianchi M.R. Chikungunya and Its Interaction With the Host Cell. Cur. Trop. Med. Rep. 2015; 2(1):22-9. DOI 10.1007/s40475-015-0038-y.

12. Kirschhausen T., Owen D., Harrison S.C. Molecular structure, function and dynamics of clathrin-mediated membrane traffic. Cold SpringHarb. Perspect. Biol. 2014; 6:122-5. DOI: 10.1101/csh-perspect.a016725.

13. Sourisseau M., Shilite G., Casartelli N., Troillet C., Guivel-Benhassine F., Rudnicka D., Sol-Foulon N., Le Roux K., Prevost M.C., Fsihi H., Frenkiel M.P., Blanchet F., Afonso P.V., Ceccaldi PE., Ozden S., Gessain A., Schuffenecker I., Verhasselt B., Zamborlini A., Saib A., Rey F.A., Arenzana-Seisdedos F., Despres P, Michault A., Albert M.L., Schwartz O. Characterization of reemerging Chikungunya virus. PloSPathog. 2007; 3(6):e89. DOI: 10.1371/journal.ppat.0030089.

14. Tsetsarkin K.A., Vanlandingham D.L., McGee C.E., Higgs S. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007; 3(12):1895-906. DOI: 10.1371/journal.ppat.0030201.

15. Tsetsarkin K.A., Chen R., Leal G., Forrester N., Higgs S., Huang J., Weaver S.C. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc. Natl. Acad. Sci. USA. 2011; 108:7872-7. DOI: 10.1073/pnas.1018344108.

16. Stapleford K.A., Coffey L.L., Lay S, Borderia A.V., Duong V, Isakov O., Rozen-Gagnon K., Arias-Goeta C., Blanc H., Beaucourt S., Haliloglu T., Schmitt C., Bonne I., Ben-Tal N., Shomron N., Failloux A.B., Buchy P, Vignuzzi M. Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential. Cell Host Microbe. 2014; 15:706-16. DOI: 10.1016/j.chom.2014.05.008.

17. Tsetsarkin K.A., McGee C.E., Volk S.M., Vanlandinham D.L., Weaver S.C., Higgs S. Epistatic roles of E2 glycoprotein mutations in adaptation of Chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PloS One. 2009; 4(8):e683. DOI: 10.1371/joumakpone.0006835.

18. Tsetsarkin K.A., Chen R., Yun R., Rossi S.L., Plante K.S., Guerbois M., Forrester N., Perng G.C., Sreekumar E., Leal G., Huang J., Mukhopadhyay S., Weaver S.C. Multi-peaked adaptive landscape for Chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat. commun. 2014; 5:4084-7. DOI: 10.1038/ncomms5084.

19. Zeng X., Mukhopadhyay S., Brooks C.L. Residue - level resolution of alphavirus envelope protein interactions in pH-dependent fusion. Proc. Natl. Acad. Sci. USA. 2015; 112:2034-9. DOI: 10.1073/pnas.1414190112.

20. Van Duijl-Richter M.K., Blijleven J., van Oijen A., Smit J.M. Chikungunya virus fusion properties elucidated by single -par¬ticle and bulk approaches. J. Gen Virol. 2015; 96(8):2122-32. DOI: 10.1099/vir.0.000144.

21. Huang Y.J., Higgs S., Horne K.M., Vanlandingham D.L. Flavivirus-mosquito interactions. Viruses. 2014; 6(11):4703-30. DOI: 10.3390/v6114703.

22. Rougeron V, Sam I.C., Caron M., Nkoghe D., Leroy E., Roques P. Chikungunya, a paradigm of neglected tropical disease that emerged to be a new health global risk. J. Clin. Virol. 2015; 64:144-52. DOI: 10.1016/j.jcv.2014.08.032.

23. Vega-Rua A., Lourenjo-de-Oliveira R., Mousson L., Vazeille M.,Tuchs S., Yebakima A., Gustave J., Girod R., Dusfour I., Leparc-Goffart I., Vanlandingham D.L., Huang Y.J., Lounibos L.P., Mohamed Ali S., Nougairede A., de Lamballerie X., Failloux A.B. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe. PLoS Negl. Trop. Dis. 2015; 9(5):e0003780. DOI: 10.1371/journal.pntd.0003780.

24. Vega-Rua A., Zouache K., Girod R., Failloux A.B., Lourenjo-de-Oliveira R. High level of vector competence of Aedes aegypti and A. albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014; 88(11):6294-306. DOI: 10.1128/jvi.00370-14.

25. McFarlane M., Arias-Goeta C., Martin E., O’Hara Z., Lulla A., Mousson L., Rainey S.M., Misbah S., Schnettler E., Donald C.L., Merits A., Kohl A., Failloux A.B. Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication. PLoS Negl. Trop. Dis. 2014; 8(7):e2994. DOI: 10.1371/journal.pntd.0002994.

26. Agarwal A., Dash P.K., Singh A.K., Sharma S., Gopalan N., Rao P.V, Parida M.M., Reiter P. Evidence of experimental vertical transmission of emerging novel ECSA genotype of Chikungunya virus in Aedes aegypti. PLoS. Negl. Trop. Dis. 2014; 8(7):e2990. DOI: 10.1371/journal.pntd.0002990.

27. Petitdemange C., Wauquier N., Vieillard V. Control of immunopathology during Chikungunya virus infection. J. Allergy Clin. Immunol. 2015; 135(4):846-55Т’ DOI: 10.1016/j.jaci.2015.01.039.

28. Issac T.H., Tan E.L., Chu J.J. Proteomic profiling of Chikungunya virus-infected human muscle cells: reveal the role of cytoskeleton network in Chikungunya virus replication. J. Proteomics. 2014; 108:445-64. DOI: 10.1016/j.jprot.2014.06.003.

29. Chen W., Foo S.S., Sims N.A., Herrero L.J., Walsh N.C., Mahalingam S. Arthritogenic alphaviruses: new insights into arthriris and bone pathology. Trends. Microbiol. 2015; 23:35-43. DOI: 10.1016/j.tim.2014.09.005.

30. Chusri S., Siripaitoon P, Hirunprat S., Silpapojakul K. Case report of neuro-Chikungunya in Southern Thailand. Am. J. Trop. Med. Hyg. 2011; 85:386-9. DOI: 10.4269/ajtmh.2011.10-0725.

31. Grivard P, Le Roux K., Laurent P, Fianu A., Perrau J. Molecular and serological diagnosis of Chikungunya virus infection. Pathol. Biol. 2007; 55:490-4.DOI: 10.1016/j.patbio.2007.07.002.

32. Wanlapakorn N., Thongmee T., Linsuwanon P, Chattakul P, Vongpunsawad S., Payungporn S., Poovorawan Y. Chikungunya outbreak in Bueng Kan Province, Thailand, 2013. Emerg. Infect. Dis. 2014; 20(81:1404-6. DOI: 10.3201/eid2008.140481.

33. Yao X.H Zhang H.L., Wang P.Y., Mansuy J.M., Grouteau E., Mengelle C., Claudet I., Izopet J. Chikungunya in the Caribbean as threat to Europe. Emerg. Infect. Dis. 2014; 20:1423-5. DOI: 10.3201/eid2008.140650.

34. Faraii A., Egizi A., Fonseca D.M., Unlu I., Crepeau T., Healy S.P., Gaugler R. Comparative host feeding patterns of the Asian ti¬ger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS. Negl. Trop. Dis. 2014; 8(8):e3037. DOI: 10.1371/journal.pntd.0003037.

35. Faria N.R., Lourenco J, de Cerqueira E.M., de Lima M.M., Pybus O., Alcantara L.C.J. Epidemiology of Chikungunya virus in Bahia, Brazil, 2014-2015. PLoS Curr. 2016; 8. pii: ecurrents.out-breaks.c97507e3e48efb946401755d468c28b2. DOI: 10.1371/currents.outbreaks.c97507e3e48efb946401755d468c28b2.

36. Requena-Mendez A., Garcia C., Aldasoro E., Vicente J.A., Martinez M.J., Perez-Moljna J.A., Calvo-Cano A., Franco L., Parron I., Molina A., Ruiz M., Alvarez J., Sanchez-Seco M.P, Gascon J. Cases of Chikungunya virus infection in travellers returning to Spain from Haiti or Dominican Republic, April-June 2014. Euro Surveill. 2014; 19(28):20853. DOI: 10.2807/1560-7917.es2014.19.28.20853.

37. Kam Y.W., Pok K.Y., Eng K.E., Tan L.K., Kaur S., Lee W.W., Leo Y.S., Ng L.C., Ng L.F. Sero-prevalence and cross-reactivity of Chikungunya virus specific anti-E2EP3 antibodies in arbovirus-infected patients. PLoS. Negl. Trop. Dis. 2015; 9(1):e3445. DOI: 10.1371/journal.pntd.0003445.

38. Thiberville S.D., Moyen N., Dupuis-Maguiraga L., Nougairede A., Gould E.A., Roques P., de Lamballerie X. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res. 2013; 99(3):345-70. DOI: 10.1016/j.antiviral.2013.06.009.

39. Broeckel R., Haese N., Messaoudi I., Streblow D.N. Nonhuman primate models of Chikungunya virus infection and disease (CHIKV NHP Model). Pathogens. 2015; 4(3):662-81. DOI: 10.3390/pathogens4030662.

40. De Lamballerie X., Boisson V, Reyner J.C., Enault S., Charrel R.N. On Chikungunya acute infection and chloroquine treatment. Vector. Borne. Zoonotic. Dis. 2008; 8:837-9. DOI: 10.1089/vbz.2008.0049.

41. Hawman D.W., Stoemer K.A., Montgomery S.A., Pal P., Oko L., Diamond M.S., Morrison T.E. Chronic Joint Disease caused by persistent Chikungunya virus unfection is controlled by the adaptive immune response. J. Virol. 2013; 87:13878-88. DOI: 10.1128/JVI.02666-13.

42. Solignat M., Cay B., Higgs S., Briant L., Devaux C. Replication cycle of Chikungunya: a reemerging arbovirus. Virology. 2009; 393:183-97. DOI: 10.1016/j.virol.2009.07.024.

43. Pal P., Fox J.M., Hawman D.W., Huang YJ., Messaoudi I., Kreklywich C., Denton M., Legasse A.W., Smith P.P., Johnson S., Axthelm M.K., Vanlandingham D.L., Streblow D.N., Higgs S., Morrison T.E., Diamond M.S. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J. Virol. 2014; 88(15):8213-26. DOI: 10.1128/jvi.01032-14.


Review

For citations:


Sizikova T.E., Sakharov R.V., Pistsov M.N., Pashchenko Yu.I., Lebedev V.N., Borisevich S.V. Chikungunya Virus as the Agent of Emergent Viral Disease. Problems of Particularly Dangerous Infections. 2019;(3):26-33. (In Russ.) https://doi.org/10.21055/0370-1069-2019-3-26-33

Views: 1349


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)