Preview

Problems of Particularly Dangerous Infections

Advanced search

Phylogenetic Affinity and Genome Structure Features of ctxAB– tcpA+ Vibrio cholerae from the Surface Waterbodies in the Territory that is Non-Endemic as Regards Cholera

https://doi.org/10.21055/0370-1069-2020-1-115-123

Abstract

Objective is analyzing the origin of the ctxAB tcpA+ Vibrio cholerae О1 El Tor strains isolated from the surface water bodies in the territory that is non-endemic of cholera; as well as investigating their phylogenetic relations to varying by epidemic significance groups of strains, based on the structure of housekeeping genes and whole genome structure. Materials and methods: we examined 25 V. cholerae strains, isolated in Siberia and Far East, including two ctxAB tcpA+ strains from surface water sources (Altai Territory, 2011; Khabarovsk Territory, 2013). Phylogenetic analysis included genomes of 36 V. cholerae strains from GenBank. Multilocus sequence typing (MLST) was carried out based on dnaE, cat, lap, pgm, recA, gyrB, and chi genes; in silico MLST – adk, gyrB, metE, mdh, pntA, purM and pyrC genes. Reconstruction of phylogeny was performed based on the comparative analysis of core genome SNPs in PhyML 3.0. Results and discussion. MLST of ctxAB tcpA+ V. cholerae О1 El Tor strains from the surface water bodies revealed that such strains form an individual genotype in the cluster of toxigenic strains and spontaneous mutants of toxigenic strains. According to results of in silico MLST, ctxAB tcpA+ isolates belong to SТ75, common to US Gulf phylogenetic line. Based on SNP-typing, ctxAB tcpA+ strains from the surface water sources were assigned to the group, originating from US Gulf V. cholerae, moreover isolate from Khabarovsk (2013) demonstrated high degree of genome homology with US Gulf-like strain from China (2009). For strains from Khabarovsk and China, we also showed the compositional identity of the pathogenicity island VPI-I and the presence of pandemicity island, VSP-1. The results testify to the fact that ctxAB tcpA+ V. cholerae strains, isolated in Siberia and Far East, originate from the US Gulf phylogenetic line. Furthermore, taking into account the results of epidemiological analysis, we can deduce that these strains are imported ones.

About the Authors

L. V. Mironova
Irkutsk Research Anti-Plague Institute of Siberia and Far East
Russian Federation
Lilia V. Mironova


N. O. Bochalgin
Irkutsk Research Anti-Plague Institute of Siberia and Far East
Russian Federation


A. S. Gladkikh
Irkutsk Research Anti-Plague Institute of Siberia and Far East
Russian Federation


S. I. Feranchuk
Irkutsk Research Anti-Plague Institute of Siberia and Far East
Russian Federation


A. S. Ponomareva
Irkutsk Research Anti-Plague Institute of Siberia and Far East
Russian Federation


S. V. Balakhonov
Irkutsk Research Anti-Plague Institute of Siberia and Far East
Russian Federation


References

1. Bel’sky V.A., Kalutsky P.V., Kiseleva V.V., Shatalova E.V., Zakaryan L.M. [Heterogeneity of microbial populations]. M.: «Medical Information Agency» LLC; 2008. 160 p.

2. Severtsov A.S. [Intraspecific diversity as a cause of evo- lutional stability]. Russian Ornithological Journal [Rossiisky Ornitologichesky Zhurnal]. 2014; 23(1072):3659–73.

3. Ramamurthy T., Mutreja A., Weill F.X., Das B., Ghosh A., Nair G.B. Revisiting the global epidemiology of cholera in conjuc- tion with the genomics of Vibrio cholerae. Front Public Health. 2019; 23(7):203. DOI: 10.3389/fpubh.2019.00203.

4. Kim E.J., Lee C.H., Nair G.B., Kim D.W. Whole-genome sequence comparisons reveal the evolution of Vibrio choler- ae O1. Trends Microbiol. 2015; 23(8):479–89. DOI: 10.1016/j. tim.2015.03.010.

5. Sjölund-Karlsson M., Reimer A., Folster J.P., Walker M., Dahourou G.A., Batra D.G., Martin I., Joyce K., Parsons M.B., Boncy J., Whichard J.M., Gilmour M.W. Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg. Infect. Dis. 2011; 17(11):2151–4. DOI: 10.3201/eid1711.110720.

6. Taviani E., Grim C.J., Choi J., Chun J., Haley B., Hasan N.A., Huq A., Colwell R.R. Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis. FEMS Microbiol. Lett. 2010; 308(2):130–7. DOI: 10.1111/j.1574-6968 .2010.02008.x.

7. Onishchenko G.G., Lomov Yu.M., Moskvitina E.A., Podosinnikova L.S., Vodyanitskaya S.Yu., Prometnoy V.I., Monakhova E.V., Vodopyanov S.O., Telesmanich N.R., Dudina N.A. [Cholera caused by Vibrio cholerae O1 ctxAB tcpA+]. Journal of Microbiology, Epidemiology and Immunobiology [Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii]. 2007; 1:23–9.

8. Onischenko G.G., Popova A.Yu., Kutyrev V.V., Smirnova N.I., Shcherbakova S.A., Moskvitina E.A., Titova S.V. [Actual prob- lems of epidemiologic control, laboratory diagnostics and prophy- laxis of cholera in Russian Federation]. Journal of Microbiology, Epidemiology and Immunobiology [Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii]. 2016; 1:89–101. DOI: 10.36233/0372-9311-2016-1-89-101.

9. Gridneva L.G., Musatov Y.S., Gromova T.V., Pukhovskaya N.M., Belozerova N.B., Utkina O.M., Ivanov L.I., Koval’Sky A.G., Mironova L.V., Kulikalova E.S., Khunkheeva Z.Y., Balakhonov S.V. [Results of Monitoring over and Biological Properties of Vibrio cholerae Isolated from Ambient Environment Objects in the Khabarovsk Territory]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2014; 1:121–4. DOI: 10.21055/0370-1069-2014-1-121-124.

10. Smirnova N.I., Kul’shan’ T.A., Baranikhina E.Y., Krasnov Y.M., Agafonov D.A., Kutyrev V.V. [Genome structure and origin of non-toxigenic strains of Vibrio cholerae of El Tor biovar with different epidemiological significance]. Genatika [Genetics]. 2016; 52(9):1029–41. DOI: 10.7868/S0016675816060126.

11. Hu D., Liu B., Feng L., Ding P., Guo X., Wang M., Cao B., Reeves P.R., Wang L. Origins of the current seventh cholera pan- demic. Proc. Natl. Acad. Sci. U S A. 2016; 113(48): E7730-E7739. DOI: 10.1073/pnas.1608732113.

12. Didelot X., Pang B., Zhou Z., McCann A., Ni P., Li D., Achtman M., Kan B. The role of China in the global spread of the current cholera pandemic. PLoS Genet. 2015; 11(3):e1005072. DOI: 10.1371/journal.pgen.1005072.

13. Mutreja A., Kim D.W., Thomson N.R., Connor T.R., Lee J.H., Kariuki S., Croucher N.J., Choi S.Y., Harris S.R., Lebens M., Niyogi S.K., Kim E.J., Ramamurthy T., Chun J., Wood J.L., Clemens J.D., Czerkinsky C., Nair G.B., Holmgren J., Parkhill J., Dougan G. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011; 477(7365):462–5. DOI: 10.1038/ nature10392.

14. Luo Y., Octavia S., Jin D., Ye J., Miao Z., Jiang T., Xia S., Lan R. US Gulf-like toxigenic O1 Vibrio cholerae causing spo- radic cholera outbreaks in China. J. Infect. 2016; 72(5):564–72. DOI: 10.1016/j.jinf.2016.02.005.

15. Garg P., Aydanian A., Smith D., J Glenn M.Jr., Nair G.B., Stine O.C. Molecular epidemiology of O139 Vibrio cholerae: mu- tation, lateral gene transfer, and founder flush. Emerg. Infect. Dis. 2003; 9(7):810–4. DOI: 10.3201/eid0907.030038.

16. Octavia S., Salim A., Kurniawan J., Lam C., Leung Q., Ahsan S., Reeves P.R., Nair G.B., Lan R. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus se- quence typing. PLoS One. 2013; 8(6):e65342. DOI: 10.1371/journal. pone.0065342.

17. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012; 67(11):2640–4. DOI: 10.1093/jac/dks261.

18. Mironova L.V., Afanas’ev M.V., Goldapel E.G., Balakhonov S.V. [Multilocus sequence typing of Vibrio cholerae strains with differing pandemic importance]. Molekularnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 2015; 33(2):26–32.

19. Siriphap A., Leekitcharoenphon P., Kaas R.S., Theethakaew C., Aarestrup F.M., Sutheinkul O., Hendriksen R.S. Characterization and genetic variation of Vibrio cholerae isolated from clinical and en- vironmental sources in Thailand. PLoS One. 2017; 12(1):e0169324. DOI: 10.1371/journal.pone.0169324.

20. Tay C.Y., Reeves P.R., Lan R. Importation of the major pi- lin TcpA gene and frequent recombination drive the divergence of the Vibrio pathogenicity island in Vibrio cholerae. FEMS Microbiol. Lett. 2008; 289(2):210–8. DOI: 10.1111/j.1574-6968.2008.01385.x.


Review

For citations:


Mironova L.V., Bochalgin N.O., Gladkikh A.S., Feranchuk S.I., Ponomareva A.S., Balakhonov S.V. Phylogenetic Affinity and Genome Structure Features of ctxAB– tcpA+ Vibrio cholerae from the Surface Waterbodies in the Territory that is Non-Endemic as Regards Cholera. Problems of Particularly Dangerous Infections. 2020;(1):115-123. (In Russ.) https://doi.org/10.21055/0370-1069-2020-1-115-123

Views: 867


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)