Preview

Problems of Particularly Dangerous Infections

Advanced search

Primary HCV Drug Resistance Mutations in Patients with Newly Diagnosed HIV Infection

https://doi.org/10.21055/0370-1069-2020-3-97-105

Abstract

Objective of our work was to assess prevalence of the primary HCV drug resistance mutations in the NS5b gene in patients with newly diagnosed HIV infection.

Materials and methods. The study material was 196 blood plasma samples from patients living in the North-Western Federal District with newly diagnosed HIV. Samples were examined for the anti-HCV antibodies and HCV RNA presence. If HCV RNA was detected, amplification was performed using three primers pairs that co-flanked the NS5b gene. After sequencing the indicated gene nucleotide sequence, the virus subtype was determined and drug resistance mutations were detected.

Results and discussion. Antibodies to HCV were detected in 18.87 % of HIV-infected individuals. HCV RNA was detected in 18.36 % of the patients, including 89.18 % anti-HCV-positive and 1.88 % anti-HCV-negative. It was shown that co-infection is more common in men (77.8 %) compared to women (22.2 %) – χ2 = 3.996 at p = 0.0456, df = 2. The difference in the HIV viral load between the groups with HIV monoinfection and with HIV + HCV coinfection was demonstrated (χ2 = 6.284 at p = 0.0432, df = 2). A significant difference between the groups by the CD4 + lyphocytes number was shown. In the phylogenetic analysis, the HCV subtypes are distributed as follows: HCV 1b – 47.2 %, HCV 3a – 30.6 %, HCV 1a – 13.9 %, HCV 2a – 5.5 % and only one sample was defined as HCV 2k – 2.8 %, respectively. Nine samples (25 %) presented NS5b mutations in  the positions related to the development of drug resistance of HCV, including two samples among HCV genotypes 1a and 3a (i.e., 5.6 % of the total HIV + HCV group), as well as five samples among HCV 1b (13.9 % of the total group). Mutations among HCV 1a were C316Y and N444D substitutions. Among HCV 1b, C316N, C451S, S556N/G substitutions were identified. Among patients with HCV 3a, 2 samples (5.6 %) with a D310N mutation associated with an unfavorable disease prognosis were found. The introduction of direct sequencing of HCV nucleotide sequences into the routine laboratory diagnostics will allow us to estimate the primary drug resistance mutations prevalence in risk groups to predict the HCV life-threatening complications development – fibrosis, cirrhosis, hepatocellular carcinoma, as well as the outcome of antiviral therapy prognosis. The data obtained can be rationally used to assess the dynamics of the HCV primary pharmacoresistance prevalence among HIV-infected individuals.

About the Authors

Yu. V. Ostankova
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation


D. E. Valutite
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation


E. B. Zueva
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation


E. N. Serikova
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation


A. N. Shchemelev
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation


S. Boumbaly
Research Institute of Applied Biology; Centre International de Recherche sur les Infections Tropicales en Guinée/International Research Center on Tropical Infections in the Republic of Guinea
Guinea

 Kindia, Republic of Guinea

Nzerekare, Republic of Guinea



T. A.L. Balde
Research Institute of Applied Biology
Guinea
Kindia, Republic of Guinea


A. V. Semenov
Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology; Saint-Petersburg State Medical University n.a. acad. I. P. Pavlov; North-Western State Medical University n.a. I. I. Mechnikov
Russian Federation
14, Mira St., Saint Petersburg, 197101, Russian Federation


References

1. Petruzziello A., Marigliano S., Loquercio G., Cozzolino A., Cacciapuoti C. Global epidemiology of hepatitis C virus infection: an up-date of the distribution and circulation of hepatitis C virus genotypes. World J. Gastroenterol. 2016; 22(34):7824–40. DOI: 10.3748/wjg.v22.i34.7824.

2. Mukomolov S.L., Levakova I.A. [Epidemiological characteristics of chronic viral hepatitis in the Russian Federation in 1999–2009]. Infektsiya i Immunitet [Russian Journal of Infection and Immunity]. 2011; 1(3):255–62. DOI: 10.15789/2220-7619-2011-3-255-262.

3. Borgia S.M., Hedskog C., Parhy B., Hyland R.H., Stamm L.M., Brainard D.M., Subramanian M.G., McHutchison J.G., Mo H., Svarovskaia E., Shafran S.D. Identification of a novel hepatitis C virus genotype from Punjab, India: expanding classification of hepatitis C Virus into 8 genotypes. J. Infect. Dis. 2018; 218(11):1722–9. DOI: 10.1093/infdis/jiy401.

4. Gower E., Estes C., Blach S., Razavi-Shearer K., Razavi H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol. 2014; 61(1):S45–57. DOI: 10.1016/j.jhep.2014.07.027.

5. Messina J.P., Humphreys I., Flaxman A., Brown A., Cooke G.S., Pybus O.G., Barnes E. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology. 2015; 61(1):77–87. DOI: 10.1002/hep.27259.

6. Soboleva N.V., Carlsen A.A., Kozhanova T.V., Kichatova V.S., Klushkina V.V., Isaeva O.V., Ignatieva M.E., Romanenko V.V., Oorzhak N.D., Malinnikova E.Yu., Kuregyan K.K., Mikhailov M.I. [The prevalence of hepatitis C virus among the conditionally healthy population of the Russian Federation]. Zhurnal Infektologii [Infectology Journal]. 2017; 9(2):56–64. DOI: 10.22625/2072-6732-2017-9-2-56-64

7. Asselah T., Boyer N., Saadoun D., Martinot-Peignoux M., Marcellin P. Direct-acting antivirals for the treatment of hepatitis C virus infection: optimizing current IFN-free treatment and future perspectives. Liver Int. 2016; 36(1):47–57. DOI: 10.1111/liv.13027.

8. World Health Organization. Global health sector strategy on viral hepatitis, 2016–2021: towards ending viral hepatitis. 2016. (Cited 11 May 2020). [Internet]. Available from: http://apps.who.int/iris/bitstream/10665/246177/1/WHO-HIV-2016.06-eng.pdf.

9. Salazar-Vizcaya L., Kouyos R.D., Metzner K.J., Caraballo Cortes K., Böni J., Shah C., Fehr J., Braun D.L., Bernasconi E., Mbunkah H.A., Hoffmann M., Labhardt N., Cavassini M., Rougemont M., Günthard H.F., Keiser O., Rauch A. Swiss HIV cohort study. Changing trends in international versus domestic HCV transmission in HIV-positive men who have sex with men: a perspective for the direct-acting antiviral scale-up era. J. Infect. Dis. 2019; 220(1):91–9. DOI: 10.1093/infdis/jiz069.

10. Kouyos R.D., Rauch A., Böni J., Yerly S., Shah C., Aubert V., Klimkait T., Kovari H., Calmy A., Cavassini M., Battegay M., Vernazza P.L., Bernasconi E., Ledergerber B., Günthard H.F. Swiss HIV cohort study (SHCS). Clustering of HCV coinfections on HIV phylogeny indicates domestic and sexual transmission of HCV. Int. J. Epidemiol. 2014; 43(3):887–96. DOI: 10.1093/ije/dyt276.

11. Martin N.K., Boerekamps A., Hill A.M., Rijnders B.J.A. Is hepatitis C virus elimination possible among people living with HIV and what will it take to achieve it? J. Int. AIDS Soc. 2018; 2:e25062. DOI: 10.1002/jia2.25062.

12. Thornton A.C., Jose S., Bhegani S., Chadwick D., Dunn D., Gilson R., Main J., Nelson M., Rodger A., Taylor C., Youssef E., Leen C., Gompels M., Kegg S., Schwenk A., Sabin C. UK Collaborative HIV cohort (UK CHIC) steering committee. Hepatitis B, Hepatitis C, and mortality among HIV-positive individuals. AIDS. 2017; 31(18):2525–32. DOI: 10.1097/QAD.0000000000001646.

13. Thompson A.J., McHutchison J.G. Antiviral resistance and specifically targeted therapy for HCV (STAT-C). J. Viral. Hepat. 2009; 16:377–87. DOI: 10.1111/j.1365-2893.2009.01124.x.

14. Welzel T.M., Bhardwaj N., Hedskog C., Chodavarapu K., Camus G., McNally J., Brainard D., Miller M.D., Mo H., Svarovskaia E., Jacobson I., Zeuzem S., Agarwal K. Global epidemiology of HCV subtypes and resistance-associated substitutions evaluated by sequencing-based subtype analyses. J. Hepatol. 2017; 67(2):224–36. DOI: 10.1016/j.jhep.2017.03.014.

15. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016; 33(7):1870–4. DOI: 10.1093/molbev/msw054.5.

16. Chamie G., Bonacini M., Bangsberg D.R., Stapleton J.T., Hall C., Overton E.T., Scherzer R., Tien P.C. Factors associated with seronegative chronic hepatitis C virus infection in HIV infection. Clin. Infect. Dis. 2007; 44:577–83. DOI: 10.1086/511038.

17. Gul A., Ali I., Gul N., Ahmed J. Amino acid mutations in NS5B protein among treatment-naive genotype 3a infectedpatients. J. Coll. Physicians Surg. Pak. 2019; 29(12):1149–52.

18. Asahina Y., Izumi N., Enomoto N., Uchihara M., Kurosaki M., Onuki Y., Nishimura Y., Ueda K., Tsuchiya K., Nakanishi H., Kitamura T., Miyake S. Mutagenic effects of ribavirin and response to interferon/ribavirin combination therapy in chronic hepatitis C. J. Hepatol. 2005; 43(4):623–29. DOI: 10.1016/j.jhep.2005.05.032.

19. Wyles D.L., Luetkemeyer A.F. Understanding hepatitis C virus drug resistance: clinical implications for current and future regimens. Top. Antivir. Med. 2017; 25(3):103–9.

20. Nelson D.R., Cooper J.N., Lalezari J.P., Lawitz E., Pockros P.J., Gitlin N. All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study. Hepatology. 2015; 61(4):1127–35. DOI: 10.1002/hep.27726.

21. Bagaglio S., Uberti-Foppa C., Messina E., Merli M., Hasson H., Andolina A., Galli A., Lazzarin A., Morsica G. Distribution of natural resistance to NS3 protease inhibitors in hepatitis C genotype 1a separated into clades 1 and 2 and in genotype 1b of HIVinfected patients. Clin. Microbiol. Infect. 2016; 22(4):386.e1-3. DOI: 10.1016/j.cmi.2015.12.007.

22. Wu R., Geng D., Chi X., Wang X., Gao X., Xu H., Shi Y., Guan Y., Wang Y., Jin J., Ding Y., Niu J. Computational analysis of naturally occurring resistance-associated substitutions in genes NS3, NS5A, and NS5B among 86 subtypes of hepatitis C virus worldwide. Infect. Drug Resist. 2019; 12:2987–3015. DOI: 10.2147/IDR.S218584.

23. Simmonds P. Genetic diversity and evolution of hepatitis C virus – 15 years on. J. Gen. Virol. 2004; 85(11):3173–88. DOI: 10.1099/vir.0.80401-0.

24. Paolucci S., Fiorina L., Mariani B., Gulminetti R., Novati S., Barbarini G., Bruno R., Baldanti F. Naturally occurring resistance mutations to inhibitors of HCV NS5A region and NS5B polymerase in DAA treatment-naïve patients. Virol. J. 2013; 10:355. DOI: 10.1186/1743-422X-10-355.

25. Suzuki F., Sezaki H., Akuta N., Suzuki Y., Seko Y., Kawamura Y., Hosaka T., Kobayashi M., Saito S., Arase Y., Ikeda K., Kobayashi M., Mineta R., Watahiki S., Miyakawa Y., Kumada H. Prevalence of hepatitis C virus variants resistant to NS3 protease inhibitors or the NS5A inhibitor (BMS-790052) in hepatitis patients with genotype 1b. J. Clin. Virol. 2012; 54(4):352–4. DOI: 10.1016/j.jcv.2012.04.024.

26. Welsch C., Schweizer S., Shimakami T., Domingues F.S., Kim S., Lemon S.M., Antes I. Ketoamide resistance and hepatitis C virus fitness in val55 variants of the NS3 serine protease. Antimicrob. Agents Chemother. 2012; 56:1907–15. DOI: 10.1128/AAC.05184-11.

27. Fridell R.A., Wang C., Sun J.H., O’Boyle D.R., Nower P., Valera L., Qiu D., Roberts S., Huang X., Kienzle B., Bifano M., Nettles R.E., Gao M. Genotypic and phenotypic analysis of variants resistant to hepatitis C virus nonstructural protein 5A replication complex inhibitor BMS-790052 in humans: in vitro and in vivo correlations. Hepatology. 2011; 54(6):1924–35. DOI: 10.1002/hep.24594.

28. Kichatova V.S., Kyuregyan K.K., Soboleva N.V., Karlsen A.A., Isaeva O.V., Isaguliants M.G., Mikhailov M.I. Frequency of interferon-resistance conferring substitutions in amino acid positions 70 and 91 of core protein of the Russian HCV 1b isolates analyzed in the T-cell epitopic context. J. Immunol. Res. 2018; 7:7685371. DOI: 10.1155/2018/7685371.

29. Tsui J.I., Ko S.C., Krupitsky E., Lioznov D., Chaisson C.E., Gnatienko N., Samet J.H. Insights on the Russian HCV Care Cascade: Minimal HCV Treatment for HIV/HCV co-infected PWID in St. Petersburg. Version 2. Hepatol. Med. Policy. 2016; 1:13. DOI: 10.1186/s41124-016-0020-x.

30. Yashechkin Yu.I., Naydenova E.V., Bugorkova T.V., Shcherbakova S.A. Setting-up of the database on the nucleotide sequences of the genomes of the strains of bacterial and viral infections agents of the I–II pathogenicity groups. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2013; (1):70–3. DOI: 10.21055/0370-1069-2013-1-70-73.


Review

For citations:


Ostankova Yu.V., Valutite D.E., Zueva E.B., Serikova E.N., Shchemelev A.N., Boumbaly S., Balde T.A., Semenov A.V. Primary HCV Drug Resistance Mutations in Patients with Newly Diagnosed HIV Infection. Problems of Particularly Dangerous Infections. 2020;(3):97-105. (In Russ.) https://doi.org/10.21055/0370-1069-2020-3-97-105

Views: 931


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)