Preview

Проблемы особо опасных инфекций

Расширенный поиск

Бактериальные тени возбудителей особо опасных инфекций

https://doi.org/10.21055/0370-1069-2023-1-17-26

Полный текст:

Аннотация

Бактериальные тени представляют собой неповрежденные оболочки бактериальных клеток, которые освобождаются от своего содержимого через поры, сформированные с помощью мягких методов биологического или химического воздействия. Методология получения бактериальных теней повышает безопасность убитых вакцин, сохраняя при этом их антигенность за счет щадящих процедур приготовления. Более того, бактериальные тени могут быть одновременно носителями нескольких антигенов или плазмидных ДНК, кодирующих белковые эпитопы. В последние годы наблюдается рост интереса к разработке прототипов вакцин и систем доставки биологически активных веществ на основе бактериальных теней. В настоящем обзоре обсуждается прогресс в разработке данного типа препаратов за последние годы. Рассмотрены различные способы получения бактериальных теней, их преимущества и ограничения при использовании. Подробно описан лизис бактерий, опосредованный фагами, молекулярные манипуляции с генами лизиса, трудности, возникающие при масштабировании биотехнологического производства бактериальных теней, и пути их преодоления. Рассмотрено использование бактериальных теней в качестве альтернативных убитых вакцин, адъювантов, рекомбинантной антигенной платформы, носителя плазмидной ДНК на моделях возбудителей особо опасных инфекций бактериальной этиологии.

Об авторах

А. С. Вагайская
ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии»
Россия

Вагайская Анастасия Сергеевна

Российская Федерация, 142279, Московская обл., р.п. Оболенск



С. В. Дентовская
ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии»
Россия

Российская Федерация, 142279, Московская обл., р.п. Оболенск



А. П. Анисимов
ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии»
Россия

Российская Федерация, 142279, Московская обл., р.п. Оболенск



Список литературы

1. Вакцины: путь от изобретения до применения. [Электронный ресурс]. URL: https://asko-med.ru/blog/vaktsiny/vaktsiny-put-ot-izobreteniya-do-primeneniya/ (дата обращения 28.12.2022).

2. Сравнение размеров геномов вируса, бактерии и млекопитающего. [Электронный ресурс]. URL: https://kodomo.fbb.msu.ru/~nataliya.kashko/term1/comparison/index.html (дата обращения 28.12.2022).

3. Charlton Hume H.K., Lua L.H.L. Platform technologies for modern vaccine manufacturing. Vaccine. 2017; 35(35 Pt. A):4480–5. DOI: 10.1016/j.vaccine.2017.02.069.

4. Monrad J.T., Sandbrink J.B., Cherian N.G. Promoting versatile vaccine development for emerging pandemics. NPJ Vaccines. 2021; 6(1):26. DOI: 10.1038/s41541-021-00290-y.

5. Langemann T., Koller V.J., Muhammad A., Kudela P., Mayr U.B., Lubitz W. The Bacterial Ghost platform system: production and applications. Bioeng. Bugs. 2010; 1(5):326–36. DOI: 10.4161/bbug.1.5.12540.

6. Haq I.U., Chaudhry W.N., Akhtar M.N., Andleeb S., Qadri I. Bacteriophages and their implications on future biotechnology: a review. Virol. J. 2012; 9(1):9. DOI: 10.1186/1743-422X-9-9.

7. Young I., Wang I., Roof W.D. Phages will out: strategies of host cell lysis. Trends Microbiol. 2000; 8(3):120–8. DOI: 10.1016/s0966-842x(00)01705-4.

8. Mendel S., Holbourn J.M., Schouten J.A., Bugg T.D.H. Interaction of the transmembrane domain of lysis protein E from bacteriophage φX174 with bacterial translocase MraY and peptidylprolyl isomerase SlyD. Microbiology. 2006; 152(10):2959–67. DOI: 10.1099/mic.0.28776-0.

9. Witte A., Wanner G., Sulzner M., Lubitz W. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol. 1992; 157(4):381–8. DOI: 10.1007/BF00248685.

10. Nakayama K., Kelly S.M., Curtiss R. Construction of an ASD+ expression-cloning vector: Stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Nat. Biotechnol. 1988; 6(6):693–7. DOI: 10.1038/nbt0688-693.

11. Szostak M.P., Hensel A., Eko F.O., Klein R., Auer T., Mader H., Haslberger A., Bunka S., Wanner G., Lubitz W. Bacterial ghosts: non-living candidate vaccines. J. Biotechnol. 1996; 44(1-3):161–70. DOI: 10.1016/0168-1656(95)00123-9.

12. Jechlinger W., Szostak M.P., Witte A., Lubitz W. Altered temperature induction sensitivity of the lambda pR/cI857 system for controlled gene E expression in Escherichia coli. FEMS Microbiol. Lett. 1999; 173(2):347–52. DOI: 10.1111/j.1574-6968.1999.tb13524.x.

13. Fu L., Lu C. A novel dual vector coexpressing PhiX174 lysis E gene and staphylococcal nuclease A gene on the basis of Lambda promoter pR and pL, respectively. Mol. Biotechnol. 2013; 54(2):436–44. DOI: 10.1007/s12033-012-9581-0.

14. Paukner S., Stiedl T., Kudela P., Bizik J., Al Laham F., Lubitz W. Bacterial ghosts as a novel advanced targeting system for drug and DNA delivery. Expert. Opin. Drug. Deliv. 2006; 3(1):11–22. DOI: 10.1517/17425247.3.1.11.

15. Kloos D.U., Strätz M., Güttler A., Steffan R.J., Timmis K.N. Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death. J. Bacteriol. 1994; 176(23):7352–61. DOI: 10.1128/jb.176.23.7352-7361.1994.

16. Zhu W., Zhang Y., Liu X. Efficient production of safetyenhanced Escherichia coli ghosts by tandem expression of PhiX 174 mutant gene E and staphylococcal nuclease A gene. Microbiol. Res. 2015; 176:7–13. DOI: 10.1016/j.micres.2015.03.011.

17. Tian Q., Zhou W., Si W., Yi F., Hua X., Yue M., Chen L., Liu S., Yu S. Construction of Salmonella pullorum ghost by coexpression of lysis gene E and the antimicrobial peptide SMAP29 and evaluation of its immune efficacy in specific-pathogen-free chicks. J. Integr. Agric. 2018; 17(1):197–209. DOI: 10.1016/S2095-3119(17)61696-4.

18. Dentovskaya S.V., Vagaiskaya A.S., Platonov M.E., Trunyakova A.S., Kotov S.A., Krasil’nikova E.A., Titareva G.M., Mazurina E.M., Gapel’chenkova T.V., Shaikhutdinova R.Z., Ivanov S.A., Kombarova T.I., Gerasimov V.N., Uversky V.N., Anisimov A.P. Peptidoglycan-free bacterial ghosts confer enhanced protection against Yersinia pestis infection. Vaccines (Basel). 2021; 10(1):51. DOI: 10.3390/vaccines10010051.

19. Zhang X., Lan Y., Jiao W., Li Y., Tang L., Jiang Y., Cui W., Qiao X. Isolation and characterization of a novel virulent phage of Lactobacillus casei ATCC 393. Food Environ. Virol. 2015; 7(4):333–41. DOI: 10.1007/s12560-015-9206-4.

20. Hou R., Li M., Tang T., Wang R., Li Y., Xu Y., Tang L., Wang L., Liu M., Jiang Y., Cui W., Qiao X. Construction of Lactobacillus casei ghosts by Holin-mediated inactivation and the potential as a safe and effective vehicle for the delivery of DNA vaccines. BMC Microbiol. 2018; 18(1):80. DOI: 10.1186/s12866-018-1216-6.

21. Yu S.Y., Peng W., Si W., Yin L., Liu S.G., Liu H.F., Zhao H.L., Wang C.L., Chang Y.H., Lin Y.Z. Enhancement of bacteriolysis of shuffled phage PhiX174 gene E. Virol. J. 2011; 8:206. DOI: 10.1186/1743-422X-8-206.

22. Haidinger W., Szostak M.P., Beisker W., Lubitz W. Green fluorescent protein (GFP)-dependent separation of bacterial ghosts from intact cells by FACS. Cytometry. 2001; 44(2):106–12.

23. Won G., Kim B., Lee J.H. A novel method to generate Salmonella Typhi Ty21a ghosts exploiting the λ phage holin-endolysin system. Oncotarget. 2017; 8(29):48186–95. DOI: 10.18632/oncotarget.18383.

24. Kwon S.R., Kang Y.J., Lee D.J., Lee E.H., Nam Y.K., Kim S.K., Kim K.H. Generation of Vibrio anguillarum ghost by coexpression of PhiX174 lysis E gene and staphylococcal nuclease A gene. Mol. Biotechnol. 2009; 42(2):154–9. DOI: 10.1007/s12033-009-9147-y.

25. Zhang C., Zhao Z., Li J., Song K.G., Hao K., Wang J., Zhu B. Bacterial ghost as delivery vehicles loaded with DNA vaccine induce significant and specific immune responses in common carp against spring viremia of carp virus. Aquaculture. 2019; 504:361–8. DOI: 10.1016/j.aquaculture.2019.02.021.

26. Kudela P., Paukner S., Mayr U.B., Cholujova D., Schwarczova Z., Sedlak J., Bizik J., Lubitz W. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J. Immunother. 2005; 28(2):136–43. DOI: 10.1097/01.cji.0000154246.89630.6f.

27. Lv M., Qin Z., Yu J., Yuan J., Sun M., Wu C., Cai J. Immunogenicity of baterial ghosts from Escherichia coli O78 isolated from ducklings. Zhongguo Yufang Shouyi Xuebao / Chin. J. Prev. Vet. Med. 2010; 32(9):712–5.

28. Ran X., Meng X.Z., Geng H.L., Chang C., Chen X., Wen X., Ni H. Generation of porcine Pasteurella multocida ghost vaccine and examination of its immunogenicity against virulent challenge in mice. Microb. Pathog. 2019; 132:208–14. DOI: 10.1016/j.micpath.2019.04.016.

29. Amara A.A., Neama A.J., Hussein A., Hashish E.A., Sheweita S.A. Evaluation the surface antigen of the Salmonella typhimurium ATCC 14028 ghosts prepared by “SLRP”. Sci. World J. 2014; 2014:840863. DOI: 10.1155/2014/840863.

30. Amara A.A., Salem-Bekhit M.M., Alanazi F.K. Spongelike: a new protocol for preparing bacterial ghosts. Sci. World J. 2013; 2013:545741. DOI: 10.1155/2013/545741.

31. Sheweita S.A., Batah A.M., Ghazy A.A., Hussein A., Amara A.A. A new strain of Acinetobacter baumannii and characterization of its ghost as a candidate vaccine. J. Infect. Public Health. 2019; 12(6):831–42. DOI: 10.1016/j.jiph.2019.05.009.

32. Rabea S., Salem-Bekhit M.M., Alanazi F.K., Yassin A.S., Moneib N.A., Hashem A.E.M. A novel protocol for bacterial ghosts’ preparation using tween 80. Saudi Pharm. J. 2018; 26(2):232–7. DOI: 10.1016/j.jsps.2017.12.006.

33. Palm-Apergi C., Hällbrink M. A new rapid cell-penetrating peptide based strategy to produce bacterial ghosts for plasmid delivery. J. Control Release. 2008; 132(1):49–54. DOI: 10.1016/j.jconrel.2008.08.011.

34. Li L., Lei L., Zhang S., Han W., Wang W. Preparation and experimental immunity of Actinobacillus pleuropneumoniae ghost vaccine. Chin. J. Vet. Sci. 2012; 32(10):1461–7.

35. Kwon A.J., Moon J.Y., Kim W.K., Kim S., Hur J. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. J. Vet. Med. Sci. 2016; 78(10):1541–8. DOI: 10.1292/jvms.16-0036.

36. Amara A.A. The critical activity for the cell wall degrading enzymes: Could the use of the lysozyme for Microbial Ghosts preparation establish emergence oral vaccination protocol? Int. Sci. Invest. J. 2016; 5(2):351–69.

37. Moon J.Y., Kim S.Y., Kim W.K., Rao Z., Park J.H., Mun J.Y., Kim B., Choi H.S., Hur J. Protective efficacy of a Salmonella Typhimurium ghost vaccine candidate constructed with a recombinant lysozyme-PMAP36 fusion protein in a murine model. Can. J. Vet. Res. 2017; 81(4):297–303.

38. Wang Q., Wang X., Wang X., Feng R., Luo Q., Huang J. Generation of a novel Streptococcus agalactiae ghost vaccine and examination of its immunogenicity against virulent challenge in tilapia. Fish Shellfish Immunol. 2018; 81:49–56. DOI: 10.1016/j.fsi.2018.06.055.

39. Choi C.W., Ji S.M., Park H.J., Oh S., Vinod N., No H.B. Method of preparing bacterial ghosts from gram-positive bacteria by hydrochloric acid treatment. US11,066,638B2. US Patent App. 2021-07-20.

40. Vinod N., Oh S., Park H.J., Koo J.M., Choi C.W., Kim S.C. Generation of a novel Staphylococcus aureus ghost vaccine and examination of its immunogenicity against virulent challenge in rats. Infect. Immun. 2015; 83(7):2957–65. DOI: 10.1128/IAI.00009-15.

41. Эмирова Х.М., Толстова Е.М., Каган М.Ю., Орлова О.М., Абасеева Т.Ю., Панкратенко Т.Е., Шпикалова И.Ю. Гемолитико-уремический синдром, ассоциированный с шигатоксин-продуцирующей Esherichia coli. Нефрология. 2016; 20(2):18–32.

42. Cai K., Gao X., Li T., Hou X., Wang Q., Liu H., Xiao L., Tu W., Liu Y., Shi J., Wang H. Intragastric immunization of mice with enterohemorrhagic Escherichia coli O157:H7 bacterial ghosts reduces mortality and shedding and induces a Th2-type dominated mixed immune response. Can. J. Microbiol. 2010; 56(5):389–98. DOI: 10.1139/w10-025.

43. Mayr U.B., Kudela P., Atrasheuskaya A., Bukin E., Ignatyev G., Lubitz W. Rectal single dose immunization of mice with Escherichia coli O157:H7 bacterial ghosts induces efficient humoral and cellular immune responses and protects against the lethal heterologous challenge. Microb. Biotechnol. 2012; 5(2):283–94. DOI: 10.1111/j.1751-7915.2011.00316.x.

44. Ran X., Chen X., Wang S., Chang C., Wen X., Zhai J., Ni H. Preparation of porcine enterotoxigenic Escherichia coli (ETEC) ghosts and immunogenic analysis in a mouse model. Microb. Pathog. 2019; 126:224–30. DOI: 10.1016/j.micpath.2018.11.015.

45. Vilte D.A., Larzábal M., Mayr U.B., Garbaccio S., Gammella M., Rabinovitz B.C., Delgado F., Meikle V., Cantet R.J., Lubitz P., Lubitz W., Cataldi A., Mercado E.C. A systemic vaccine based on Escherichia coli O157:H7 bacterial ghosts (BGs) reduces the excretion of E. coli O157:H7 in calves. Vet. Immunol. Immunopathol. 2012; 146(2):169–76. DOI: 10.1016/j.vetimm.2012.03.002.

46. Cai K., Tu W., Liu Y., Li T., Wang H. Novel fusion antigen displayed-bacterial ghosts vaccine candidate against infection of Escherichia coli O157:H7. Sci. Rep. 2015; 5:17479. DOI: 10.1038/srep17479.

47. Paton A.W., Chen A.Y., Wang H., McAllister L.J., Höggerl F., Mayr U.B., Shewell L.K., Jennings M.P., Morona R., Lubitz W., Paton J.C. Protection against Shiga-toxigenic Escherichia coli by non-genetically modified organism receptor mimic bacterial ghosts. Infect. Immun. 2015; 83(9):3526–33. DOI: 10.1128/IAI.00669-15.

48. Gong S., Nan N., Sun Y., He Z., Li J., Chen F., Li T., Ning N., Wang J., Li Z., Luo D., Wang H. Protective immunity elicited by VP1 Chimeric antigens of bacterial ghosts against hand-foot-andmouth disease virus. Vaccines (Basel). 2020; 8(1):61. DOI: 10.3390/vaccines8010061.

49. Lagzian M., Bassami M.R., Dehghani H. In vitro responses of chicken macrophage-like monocytes following exposure to pathogenic and non-pathogenic E. coli ghosts loaded with a rational design of conserved genetic materials of influenza and Newcastle disease viruses. Vet. Immunol. Immunopathol. 2016; 176:5–17. DOI: 10.1016/j.vetimm.2016.05.005.

50. Cao J., Zhu X.C., Liu X.Y., Yuan K., Zhang J.J., Gao H.H., Li J.N. An oral double-targeted DNA vaccine induces systemic and intestinal mucosal immune responses and confers high protection against Vibrio mimicus in grass carps. Aquaculture. 2019; 504:248–59. DOI: 10.1016/j.aquaculture.2019.02.006.

51. Hajam I.A., Dar P.A., Appavoo E., Kishore S., Bhanuprakash V., Ganesh K. Bacterial ghosts of Escherichia coli drive efficient maturation of bovine monocyte-derived dendritic cells. PLoS One. 2015; 10(12):e0144397. DOI: 10.1371/journal.pone.0144397.

52. Dobrovolskienė N., Pašukonienė V., Darinskas A., Kraśko J.A., Žilionytė K., Mlynska A., Gudlevičienė Ž., Mišeikytė-Kaubrienė E., Schijns V., Lubitz W., Kudela P., Strioga M. Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines. Vaccine. 2018; 36(29):4171–80. DOI: 10.1016/j.vaccine.2018.06.016.

53. Eko F.O., Hensel A., Bunka S., Lubitz W. Immunogenicity of Vibrio cholerae ghosts following intraperitoneal immunization of mice. Vaccine. 1994; 12(14):1330–4. DOI: 10.1016/s0264-410-x(94)80061-4.

54. Eko F.O., Mayr U.B., Attridge S.R., Lubitz W. Characterization and immunogenicity of Vibrio cholerae ghosts expressing toxin-coregulated pili. J. Biotechnol. 2000; 83(1-2):115–23. DOI: 10.1016/s0168-1656(00)00315-1.

55. Eko F.O., Schukovskaya T., Lotzmanova E.Y., Firstova V.V., Emalyanova N.V., Klueva S.N., Kravtzov A.L., Livanova L.F., Kutyrev V.V., Igietseme J.U., Lubitz W. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine. 2003; 21(25-26):3663–74. DOI: 10.1016/s0264-410-x(03)00388-8.

56. Eko F.O., Szostak M.P., Wanner G., Lubitz W. Production of Vibrio cholerae ghosts (VCG) by expression of a cloned phage lysis gene: potential for vaccine development. Vaccine. 1994; 12(13):1231–7. DOI: 10.1016/0264-410x(94)90249-6.

57. Eko F.O., Lubitz W., McMillan L., Ramey K., Moore T.T., Ananaba G.A., Lyn D., Black C.M., Igietseme J.U. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine. 2003; 21(15):1694–703. DOI: 10.1016/s0264-410x(02)00677-1.

58. Liu J., Li Y., Sun Y., Ji X., Zhu L., Guo X., Zhou W., Zhou B., Liu S., Zhang R., Feng S. Immune responses and protection induced by Brucella suis S2 bacterial ghosts in mice. Vet. Immunol. Immunopathol. 2015; 166(3-4):138–44. DOI: 10.1016/j.vetimm.2015.04.008.

59. Qian J., Bu Z., Lang X., Yan G., Yang Y., Wang X., Wang X. A safe and molecular-tagged Brucella canis ghosts confers protection against virulent challenge in mice. Vet. Microbiol. 2017; 204:121–8. DOI: 10.1016/j.vetmic.2017.04.027.

60. Wang S., Li Z., Zhang J., Xi L., Cui Y., Zhang W., Zhang J., Zhang H. A safe non-toxic Brucella abortus ghosts induce immune responses and confer protection in BALB/c mice. Mol. Immunol. 2020; 124:117–24. DOI: 10.1016/j.molimm.2020.06.002.

61. He C., Yang J., Zhao H., Liu M., Wu D., Liu B., He S., Chen Z. Vaccination with a Brucella ghost developed through a double inactivation strategy provides protection in Guinea pigs and cattle. Microb. Pathog. 2022; 162:105363. DOI: 10.1016/j.micpath.2021.105363.

62. Boman H.G. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 2003; 254(3):197–215. DOI: 10.1046/j.1365-2796.2003.01228.x.

63. King T.P., Jim S.Y., Wittkowski K.M. Inflammatory role of two venom components of yellow jackets (Vespula vulgaris): a mast cell degranulating peptide mastoparan and phospholipase A1. Int. Arch. Allergy Immunol. 2003; 131(1):25–32. DOI: 10.1159/000070431.

64. Scocchi M., Zelezetsky I., Benincasa M., Gennaro R., Mazzoli A., Tossi A. Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS J. 2005; 272(17):4398–406. DOI: 10.1111/j.1742-4658.2005.04852.x.

65. Lv Y., Wang J., Gao H., Wang Z., Dong N., Ma Q., Shan A. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PLoS One. 2014; 9(1):e86364. DOI: 10.1371/journal.pone.0086364.

66. Kim W.K., Moon J.Y., Cho J.S., Akanda M.R., Park B.Y., Kug Eo S., Park S.Y., Lee J.H., Hur J. Brucella abortus lysed cells using GI24 induce robust immune response and provide effective protection in Beagles. Pathog. Dis. 2018; 76(1). DOI: 10.1093/femspd/ftx124.

67. Kim W.K., Moon J.Y., Cho J.S., Ochirkhuyag E., Akanda M.R., Park B.Y., Hur J. Protective efficacy of an inactivated Brucella abortus vaccine candidate lysed by GI24 against brucellosis in Korean black goats. Can. J. Vet. Res. 2019; 83(1):68–74.

68. Sumathi B., Veeregowda B., Byregowda S., Rathnamma D., Rajeswari S., Isloor S., Sobharani M., Venkatesha M., Narayanaswamy H. Construction of Brucella melitensis ghost as a putative vaccine candidate against re-emerging disease – Brucellosis. Int. J. of Infect. Dis. 2020; 101:475–6. DOI: 10.1016/j.ijid.2020.09.1245.

69. Дентовская С.В., Копылов П.Х., Иванов С.А., Агеев С.А., Анисимов А.П. Молекулярные основы вакцинопрофилактики чумы. Молекулярная генетика, микробиология и вирусология. 2013; 3:3–12.

70. Byvalov A.A., Konyshev I.V., Uversky V.N., Dentovskaya S.V., Anisimov A.P. Yersinia outer membrane vesicles as potential vaccine candidates in protecting against plague. Biomolecules. 2020; 10(12):1694. DOI: 10.3390/biom10121694.

71. Elkins K.L., Burns D.L., Schmitt M.P., Weir J.P. Vaccines against bioterror agents. In: Kaufmann S.H.E., editor. Novel Vaccination Strategies. 2004. P. 529–45. DOI: 10.1002/3527601449.ch24

72. Kvitko B.H., Cox C.R., DeShazer D., Johnson S.L., Voorhees K.J., Schweizer H.P. φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity. BMC Microbiol. 2012; 12:289. DOI: 10.1186/1471-2180-12-289.

73. Witte A., Wanner G., Bläsi U., Halfmann G., Szostak M., Lubitz W. Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E. J. Bacteriol. 1990; 172(7):4109–14. DOI: 10.1128/jb.172.7.4109-4114.1990.

74. Wu X., Ju X., Du L., Yuan J., Wang L., He R., Chen Z. Production of bacterial ghosts from gram-positive pathogen Listeria monocytogenes. Foodborne Pathog. Dis. 2017; 14(1):1–7. DOI: 10.1089/fpd.2016.2184.

75. Chen H., Ji H., Kong X., Lei P., Yang Q., Wu W., Jin L., Sun D. Bacterial ghosts-based vaccine and drug delivery systems. Pharmaceutics. 2021; 13(11):1892. DOI: 10.3390/pharmaceutics13111892.


Рецензия

Для цитирования:


Вагайская А.С., Дентовская С.В., Анисимов А.П. Бактериальные тени возбудителей особо опасных инфекций. Проблемы особо опасных инфекций. 2023;(1):17-26. https://doi.org/10.21055/0370-1069-2023-1-17-26

For citation:


Vagaiskaya A.S., Dentovskaya S.V., Anisimov A.P. Bacterial Ghosts of the Causative Agents of Particularly Dangerous Infections. Problems of Particularly Dangerous Infections. 2023;(1):17-26. (In Russ.) https://doi.org/10.21055/0370-1069-2023-1-17-26

Просмотров: 280


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)