Новые данные о распространении вируса Нипах (Henipavirus. Paramyxoviridae) и методах его индикации и идентификации
https://doi.org/10.21055/0370-1069-2023-1-27-36
Аннотация
Вирус Нипах (Nipah virus, NiV) – представитель рода Henipavirus семейства Paramyxoviridae, является возбудителем опасной инфекционной болезни с широким спектром клинических проявлений: от бессимптомной (субклинической) формы до тяжелого энцефалита со смертельным исходом. Несмотря на регистрацию заболевания, вызванного данным вирусом, только в странах Юго-Восточной Азии, не исключена возможность завоза возбудителя на неэндемичные территории. Также данный патоген способен инфицировать не только большое количество людей, но и животных, являясь причиной тяжелых заболеваний и нанося значительный экономический ущерб, поэтому представляет собой как медицинскую, так и ветеринарную проблему. В настоящем обзоре приведены имеющиеся в современной печати данные о строении и классификации вируса Нипах, возможных циклах его передачи, распространении, методах индикации и идентификации возбудителя в клиническом и биологическом материале, а также эффективности их применения в зависимости от сроков начала заболевания и об имеющихся коммерческих диагностических и профилактических препаратах.
Об авторах
Е. И. КривошеинаРоссия
Кривошеина Екатерина Ильинична
Российская Федерация, 630559, Новосибирская обл., р.п. Кольцово
М. Ю. Карташов
Россия
Российская Федерация, 630559, Новосибирская обл., р.п. Кольцово
Tran Thi Nhai
Вьетнам
Ханой, Социалистическая Республика Вьетнам
Е. В. Найденова
Россия
Российская Федерация, 410005, Саратов, ул. Университетская, 46
Список литературы
1. WHO. [Cited 27 Dec 2022]. [Internet]. Available from: https://www.who.int/ru/news/item/21-11-2022-who-to-identifypathogens-that-could-cause-future-outbreaks-and-pandemics.
2. WHO: Prioritizing diseases for research and development in emergency contexts [Cited 27 Dec 2022]. [Internet]. Available from: https://www.who.int/activities/prioritizing-diseases-for-researchand-development-in-emergency-contexts.
3. Chua K.B., Bellini W.J., Rota P.A., Harcourt B.H., Tamin A., Lam S.K., Ksiazek T.G., Rollin P.E., Zaki S.R., Shieh W., Goldsmith C.S., Gubler D.J., Roehrig J.T., Eaton B., Gould A.R., Olson J., Field H., Daniels P., Ling A.E., Peters C.J., Anderson L.J., Mahy B.W. Nipah virus: a recently emergent deadly paramyxovirus. Science. 2000; 288(5470):1432–5. DOI: 10.1126/science.288.5470.1432.
4. Montgomery J.M., Hossain M.J., Gurley E., Carroll D.S., Croisier A., Bertherat E., Asgari N., Formenty P., Keeler N., Comer J., Bell R.M., Akram K., Molla A.R., Zaman K., Islam M.R., Wagoner K., Mills J.N., Rollin P.E., Ksiazek T.G., Breiman R.F. Risk factors for Nipah virus encephalitis in Bangladesh. Emerg. Infect. Dis. 2008; 14(10):1526–32. DOI: 10.3201/eid1410.060507.
5. Sazzad H.M.S., Hossain M.J., Gurley E.S., Ameen K.M.H., Parveen S., Islam M.S., Faruque L.I., Podder G., Banu S.S., Lo M.K., Rollin P.E., Rota P.E., Daszak P., Rahman M., Luby S.P. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg. Infect. Dis. 2013; 19(2):210–17. DOI: 10.3201/eid1902.120971.
6. Hauser N., Gushiken A.C., Narayanan S., Kottilil S., Chua J.V. Evolution of Nipah virus infection: past, present, and future considerations. Trop. Med. Infect. Dis. 2021; 6(1):24. DOI: 10.3390/tropicalmed6010024.
7. Ang B.S.P., Lim T.C.C., Wang L. Nipah virus infection. J. Clin. Microbiol. 2018; 56(6):e01875-17. DOI: 10.1128/JCM.01875-17.
8. International Committee on Taxonomy of Viruses: ICTV [Cited 27 Dec 2022]. [Internet]. Available from: https://ictv.global.
9. Wang L., Harcourt B.H., Yu M., Tamin A., Rota P.A., Bellini W.J., Eaton B.T. Molecular biology of Hendra and Nipah viruses. Microbes Infect. 2001; 3(4):279–87. DOI: 10.1016/s1286-4579-(01)01381-8.
10. Gazal S., Sharma N., Gazal S., Tikoo M., Shikha D., Badroo G.A., Rashid M., Lee S.J. Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic. Pathogens. 2022; 11(12):1419. DOI: 10.3390/pathogens11121419.
11. Ternhag A., Penttinen P. [Nipah virus – another product from the Asian “virus factory”]. Lakartidningen. 2005; 102(14):1046–7. [Article in Swedish].
12. Bossart K.N., McEachern J.A., Hickey A.C., Choudhry V., Dimitrov D.S., Eaton B.T., Wang L.F. Neutralization assays for differential henipavirus serology using Bio-Plex protein array systems. J. Virol. Methods. 2007; 142(1-2):29–40. DOI: 10.1016/j.jviromet.2007.01.003.
13. Liu Q., Bradel-Tretheway B., Monreal A.I., Saludes J.P., Lu X., Nicola A.V., Aguilar H.C. Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J. Virol. 2015; 89(3):1838–50. DOI: 10.1128/JVI.02277-14.
14. Uchida S., Horie R., Sato H., Kai C., Yoneda M. Possible role of the Nipah virus V protein in the regulation of the interferon beta induction by interacting with UBX domain-containing protein1. Sci. Rep. 2018; 8(1):7682. DOI: 10.1038/s41598-018-25815-9.
15. Satterfield B.A., Cross R.W., Fenton K.A., Borisevich V., Agans K.N., Deer D.J., Graber J., Basler C.F., Geisbert T.W., Mire C.E. Nipah virus C and W proteins contribute to respiratory disease in ferrets. J. Virol. 2016; 90(14):6326–43. DOI: 10.1128/JVI.00215-16.
16. Patch J.R., Crameri G., Wang L.F., Eaton B.T., Broder C.C. Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virol. J. 2007; 4:1. DOI: 10.1186/1743-422X-4-1.
17. Halpin K., Young P.L., Field H.E., Mackenzie J.S. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 2000; 81(Pt. 8):1927–32. DOI: 10.1099/0022-1317-81-8-1927.
18. Clayton B.A., Middleton D., Arkinstall R., Frazer L., Wang L.F., Marsh G.A. The nature of exposure drives transmission of Nipah viruses from Malaysia and Bangladesh in ferrets. PLoS Negl. Trop. Dis. 2016; 10(6):e0004775. DOI: 10.1371/journal.pntd.0004775.
19. Yadav P.D., Raut C.G., Shete A.M., Mishra A.C., Towner J.S., Nichol S.T., Mourya D.T. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. Am. J. Trop. Med. Hyg. 2012; 87(3):576–8. DOI: 10.4269/ajtmh.2012.11-0416.
20. Mond Nor M.N., Gan C.H., Ong B.L. Nipah virus infection of pigs in peninsular Malaysia. Rev. Sci. Tech. 2000; 19(1):160–5. DOI: 10.20506/rst.19.1.1202.
21. Chua K.B., Koh C.L., Hooi P.S., Wee K.F., Khong J.H., Chua B.H., Chan Y.P., Lim M.E., Lam S.K. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 2002; 4(2):145–51. DOI: 10.1016/S1286-4579(01)01522-2.
22. Singh R.K., Dhama K., Chakraborty S., Tiwari R., Natesan S., Khandia R., Munjal A., Vora K.S., Latheef S.K., Karthik K., Singh Malik Y., Singh R., Chaicumpa W., Mourya D.T. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. Vet. Q. 2019; 39(1):26–55. DOI: 10.1080/01652176.2019.1580827.
23. Islam M.S., Sazzad H.M., Satter S.M., Sultana S., Hossain M.J., Hasan M., Rahman M., Campbell S., Cannon D.L., Ströher U., Daszak P., Luby S.P., Gurley E.S. Nipah virus transmission from bats to humans associated with drinking traditional liquor made from date palm sap, Bangladesh, 2011–2014. Emerg. Infect. Dis. 2016; 22(4):664–70. DOI: 10.3201/eid2204.151747.
24. Fogarty R., Halpin K., Hyatt A.D., Daszak P., Mungall B.A. Henipavirus susceptibility to environmental variables. Virus Res. 2008; 132(1-2):140–4. DOI: 10.1016/j.virusres.2007.11.010.
25. Luby S.P., Gurley E.S., Hossain M.J. Transmission of human infection with Nipah virus. Clin. Infect. Dis. 2009; 49(11):1743–8. DOI: 10.1086/647951.
26. Negrete O.A., Levroney E.L., Aguilar H.C., Bertolotti-Ciarlet A., Nazarian R., Tajyar S., Lee B. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature. 2005; 436(7049):401–5. DOI: 10.1038/nature03838.
27. Parashar U.D., Sunn L.M., Ong F., Mounts A.W., Arif M.T., Ksiazek T.G., Kamaluddin M.A., Mustafa A.N., Kaur H., Ding L.M., Othman G., Radzi H.M., Kitsutani P.T., Stockton P.C., Arokiasamy J., Gary H.E. Jr., Anderson L.J. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J. Infect. Dis. 2000; 181(5):1755–9. DOI: 10.1086/315457.
28. Abdullah S., Tan C.T. Henipavirus encephalitis. Handb. Clin. Neurol. 2014; 123:663–70. DOI: 10.1016/B978-0-444-53488-0.00032-8.
29. Siva S.R., Chong H.T., Tan C.T. Ten year clinical and serological outcomes of Nipah virus infection. Neurology Asia. 2009; 14:53–8.
30. Sejvar J.J., Hossain J., Saha S.K., Gurley E.S., Banu S., Hamadani J.D., Faiz M.A., Siddiqui F.M., Mohammad Q.D., Mollah A.H., Uddin R., Alam R., Rahman R., Tan C.T., Bellini W., Rota P., Breiman R.F., Luby S.P. Long-term neurological and functional outcome in Nipah virus infection. Ann. Neurol. 2007; 62(3):235–42. DOI: 10.1002/ana.21178.
31. Ang B.S.P., Lim T.C.C., Wang L. Nipah virus infection. J. Clin. Microbiol. 2018; 56(6):e01875-17. DOI: 10.1128/JCM.01875-17.
32. Devnath P., Masud H.M.A.A. Nipah virus: a potential pandemic agent in the context of the current severe acute respiratory syndrome coronavirus 2 pandemic. New Microbes New Infect. 2021; 41:100873. DOI: 10.1016/j.nmni.2021.100873.
33. Skowron K., Bauza-Kaszewska J., Grudlewska-Buda K., Wiktorczyk-Kapischke N., Zacharski M., Bernaciak Z., Gospodarek-Komkowska E. Nipah virus – another threat from the world of zoonotic viruses. Front. Microbiol. 2022; 12:811157. DOI: 10.3389/fmicb.2021.811157.
34. Aljofan M. Hendra and Nipah infection: emerging paramyxoviruses. Virus. Res. 2013; 177(2):119–26. DOI: 10.1016/j.virusres.2013.08.002.
35. Cheng T.L., Cheng C.M., Chen B.M., Tsao D.A., Chuang K.H., Hsiao S.W., Lin Y.H., Roffler S.R. Monoclonal antibody-based quantitation of poly(ethylene glycol)-derivatized proteins, liposomes, and nanoparticles. Bioconjug. Chem. 2005; 16(5):1225–31. DOI: 10.1021/bc050133f.
36. Aljofan M., Porotto M., Moscona A., Mungall B.A. Development and validation of a chemiluminescent immunodetection assay amenable to high throughput screening of antiviral drugs for Nipah and Hendra virus. J. Virol. Methods. 2008; 149(1):12–9. DOI: 10.1016/j.jviromet.2008.01.016.
37. Paton N.I., Leo Y.S., Zaki S.R., Auchus A.P., Lee K.E., Ling A.E., Chew S.K., Ang B., Rollin P.E., Umapathi T., Sng I., Lee C.C., Lim E., Ksiazek T.G. Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet. 1999; 354(9186):1253–6. DOI: 10.1016/S0140-6736(99)04379-2.
38. Dawes B.E., Kalveram B., Ikegami T., Juelich T., Smith J.K., Zhang L., Park A., Lee B., Komeno T., Furuta Y., Freiberg A.N. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci. Rep. 2018; 8(1):7604. DOI: 10.1038/s41598-018-25780-3.
39. Lo M.K., Feldmann F., Gary J.M., Jordan R., Bannister R., Cronin J., Patel N.R., Klena J.D., Nichol S.T, Cihlar T., Zaki S.R., Feldmann H., Spiropoulou C.F., de Wit E. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. 2019; 11(494):eaau9242. DOI: 10.1126/scitranslmed.aau9242.
40. Hotard A.L., He B., Nichol S.T., Spiropoulou C.F., Lo M.K. 4’-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses
41. with high potency. Antiviral Res. 2017; 144:147–52. DOI: 10.1016/j.antiviral.2017.06.011.
42. Negrete O.A., Levroney E.L., Aguilar H.C., Bertolotti-Ciarlet A., Nazarian R., Tajyar S., Lee B. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature. 2005; 436(7049):401–5. DOI: 10.1038/nature03838.
43. Satterfield B.A., Dawes B.E., Milligan G.N. Status of vaccine research and development of vaccines for Nipah virus. Vaccine. 2016; 34(26):2971–5. DOI: 10.1016/j.vaccine.2015.12.075.
44. de Wit E., Prescott J., Falzarano D., Bushmaker T., Scott D., Feldmann H., Munster V.J. Foodborne transmission of Nipah virus in Syrian hamsters. PLoS Pathog. 2014; 10(3):e1004001. DOI: 10.1371/journal.ppat.1004001.
45. Hooper P., Zaki S., Daniels P., Middleton D. Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect. 2001; 3(4):315–22. DOI: 10.1016/s1286-4579(01)01385-5.
46. Tigabu B., Rasmussen L., White E.L., Tower N., Saeed M., Bukreyev A., Rockx B., LeDuc J.W., Noah J.W. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus. Assay Drug Dev. Technol. 2014; 12(3):155–61. DOI: 10.1089/adt.2013.567.
47. Chang L.Y., Ali A.R., Hassan S.S., AbuBakar S. Quantitative estimation of Nipah virus replication kinetics in vitro. Virol. J. 2006; 3:47. DOI: 10.1186/1743-422X-3-47.
48. Schountz T., Campbell C., Wagner K., Rovnak J., Martellaro C., DeBuysscher B.L., Feldmann H., Prescott J. Differential innate immune responses elicited by Nipah virus and Cedar virus correlate with disparate in vivo pathogenesis in hamsters. Viruses. 2019; 11(3):291. DOI: 10.3390/v11030291.
49. Kaku Y., Park E.S., Noguchi A., Inoue S., Lunt R., Malbas F.F. Jr., Demetria C., Neoh H.M., Jamal R., Morikawa S. Establishment of an immunofluorescence assay to detect IgM antibodies to Nipah virus using HeLa cells expressing recombinant nucleoprotein. J. Virol. Methods. 2019; 269:83–7. DOI: 10.1016/j.jviromet.2019.03.009.
50. Smither S.J., Eastaugh L.S., Findlay J.S., O’Brien L.M, Thom R., Lever M.S. Survival and persistence of Nipah virus in blood and tissue culture media. Emerg. Microbes Infect. 2019; 8(1):1760–2. DOI: 10.1080/22221751.2019.1698272.
51. Satterfield B.A., Cross R.W., Fenton K.A., Agans K.N., Basler C.F., Geisbert T.W., Mire C.E. The immunomodulating V and W proteins of Nipah virus determine disease course. Nat. Commun. 2015; 6:7483. DOI: 10.1038/ncomms8483.
52. Mathieu C., Pohl C., Szecsi J., Trajkovic-Bodennec S., Devergnas S., Raoul H., Cosset F.L., Gerlier D., Wild T.F., Horvat B. Nipah virus uses leukocytes for efficient dissemination within a host. J. Virol. 2011; 85(15):7863–71. DOI: 10.1128/JVI.00549-11.
53. AbuBakar S., Chang L.Y., Ali A.R., Sharifah S.H., Yusoff K., Zamrod Z. Isolation and molecular identification of Nipah virus from pigs. Emerg. Infect. Dis. 2004; 10(12):2228–30. DOI: 10.3201/eid1012.040452.
54. Stroh E., Fischer K., Schwaiger T., Sauerhering L., Franzke K., Maisner A., Groschup M.H., Blohm U., Diederich S. Henipaviruslike particles induce a CD8 T cell response in C57BL/6 mice. Vet. Microbiol. 2019; 237:108405. DOI: 10.1016/j.vetmic.2019.108405.
55. de Wit E., Munster V.J. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J. Pathol. 2015; 235(2):196–205. DOI: 10.1002/path.4444.
56. Guillaume V., Lefeuvre A., Faure C., Marianneau P., Buckland R., Lam S.K., Wild T.F., Deubel V. Specific detection of Nipah virus using real-time RT-PCR (TaqMan). J. Virol. Methods. 2004; 120(2):229–37. DOI: 10.1016/j.jviromet.2004.05.018.
57. Feldman K.S., Foord A., Heine H.G., Smith I.L., Boyd V., Marsh G.A., Wood J.L., Cunningham A.A., Wang L.F. Design and evaluation of consensus PCR assays for henipaviruses. J. Virol. Methods. 2009; 161(1):52–7. DOI: 10.1016/j.jviromet.2009.05.014.
58. Drexler J.F., Corman V.M., Gloza-Rausch F., Seebens A., Annan A., Ipsen A., Kruppa T., Müller M.A., Kalko E.K., Adu-Sarkodie Y., Oppong S., Drosten C. Henipavirus RNA in African bats. PLoS One. 2009; 4(7):e6367. DOI: 10.1371/journal.pone.0006367.
59. Tong S., Chern S.W., Li Y., Pallansch M.A., Anderson L.J. Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. J. Clin. Microbiol. 2008; 46(8):2652–8. DOI: 10.1128/JCM.00192-08.
60. Wacharapluesadee S., Hemachudha T. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats. J. Virol. Methods. 2007; 141(1):97–101. DOI: 10.1016/j.jviromet.2006.11.023.
61. Feldman K.S., Foord A., Heine H.G., Smith I.L., Boyd V., Marsh G.A., Wood J.L., Cunningham A.A., Wang L.F. Design and evaluation of consensus PCR assays for henipaviruses. J. Virol. Methods. 2009; 161(1):52–7. DOI: 10.1016/j.jviromet.2009.05.014.
62. Foord A.J., White J.R., Colling A., Heine H.G. Microsphere suspension array assays for detection and differentiation of Hendra and Nipah viruses. Biomed. Res. Int. 2013; 2013:289295. DOI: 10.1155/2013/289295.
63. Liu J., Ochieng C., Wiersma S., Ströher U., Towner J.S., Whitmer S., Nichol S.T., Moore C.C., Kersh G.J., Kato C., Sexton C., Petersen J., Massung R., Hercik C., Crump J.A., Kibiki G., Maro A., Mujaga B., Gratz J., Jacob S.T., Banura P., Scheld W.M., Juma B., Onyango C.O., Montgomery J.M., Houpt E., Fields B. Development of a TaqMan array card for acute-febrile-illness outbreak investigation and surveillance of emerging pathogens, including Ebola virus. J. Clin. Microbiol. 2016; 54(1):49–58. DOI: 10.1128/JCM.02257-15.
64. Onyango C.O., Loparev V., Lidechi S., Bhullar V., Schmid D.S., Radford K., Lo M.K., Rota P., Johnson B.W., Munoz J., Oneko M., Burton D., Black C.M., Neatherlin J., Montgomery J.M., Fields B. Evaluation of a TaqMan array card for detection of central nervous system infections. J. Clin. Microbiol. 2017; 55(7):2035–44. DOI: 10.1128/JCM.02469-16.
65. Ma L., Chen Z., Guan W., Chen Q., Liu D. Rapid and specific detection of all known Nipah virus strains’ sequences with reverse transcription-loop-mediated isothermal amplification. Front. Microbiol. 2019; 10:418. DOI: 10.3389/fmicb.2019.00418.
66. Chip-based Real Time PCR test for Nipah Virus. [Cited 27 Dec 2022]. [Internet]. Available from: https://www.molbiodiagnostics.com/uploads/product_download/20220411.111556~Truenat-Nipahpackinsert-V-04.pdf.
67. Mazzola L.T., Kelly-Cirino C. Diagnostics for Nipah virus: a zoonotic pathogen endemic to Southeast Asia. BMJ Glob. Health. 2019; 4(Suppl. 2):e001118. DOI: 10.1136/bmjgh-2018-001118.
68. Ramasundrum V., Tan C.T., Chua K.B., Chong H.T., Goh K.J., Chew N.K., Tan K.S., Thayaparan T., Kunjapan S.R., Petharunam V., Loh Y.L., Ksiazek T.G., Lam S.K. Kinetics of IgM and IgG seroconversion in Nipah virus infection. Neurol. J. Southeast Asia. 2000; 5:23–8.
69. Daniels P., Ksiazek T., Eaton B.T. Laboratory diagnosis of Nipah and Hendra virus infections. Microbes Infect. 2001; 3(4):289–95. DOI: 10.1016/s1286-4579(01)01382-x.
70. Tamin A., Harcourt B.H., Lo M.K., Roth J.A., Wolf M.C., Lee B., Weingartl H., Audonnet J.C., Bellini W.J., Rota P.A. Development of a neutralization assay for Nipah virus using pseudotype particles. J. Virol. Methods. 2009; 160(1-2):1–6. DOI: 10.1016/j.jviromet.2009.02.025.
71. Kaku Y., Noguchi A., Marsh G.A., Barr J.A., Okutani A., Hotta K., Bazartseren B., Broder C.C., Yamada A., Inoue S., Wang L.F. Antigen capture ELISA system for henipaviruses using polyclonal antibodies obtained by DNA immunization. Arch. Virol. 2012; 157(8):1605–9. DOI: 10.1007/s00705-012-1338-3.
Рецензия
Для цитирования:
Кривошеина Е.И., Карташов М.Ю., Thi Nhai T., Найденова Е.В. Новые данные о распространении вируса Нипах (Henipavirus. Paramyxoviridae) и методах его индикации и идентификации. Проблемы особо опасных инфекций. 2023;(1):27-36. https://doi.org/10.21055/0370-1069-2023-1-27-36
For citation:
Krivosheina E.I., Kartashov M.Yu., Thi Nhai T., Naidenova E.V. New Data on the Dissemination of the Nipah Virus (Henipavirus. Paramyxoviridae) and Methods of its Indication and Identification. Problems of Particularly Dangerous Infections. 2023;(1):27-36. (In Russ.) https://doi.org/10.21055/0370-1069-2023-1-27-36