Preview

Problems of Particularly Dangerous Infections

Advanced search

Intraspecific Differentiation of Francisella tularensis Strains Using Multilocus Real-Time Polymerase Chain Reaction

https://doi.org/10.21055/0370-1069-2023-1-132-141

Abstract

The aim of the study was to develop a method for intraspecific differentiation of the tularemia microbe: subspecies tularensis (subpopulations AI and AII), holarctica (biovars japonica, EryS/R), mediasiatica, and novicida using multilocus real-time PCR. Materials and methods. We used 48 strains of F. tularensis of various subspecies, biovars, and subpopulations. Intraspecific appurtenance of the strains was carried out on the basis of the analysis of the RD-1 region variability applying PCR, the sdhA gene by Sanger fragment sequencing and by the disk diffusion method using disks with erythromycin. The selection of primers and probes was performed using the software available at www.genscript.com and GeneRunner 6.5.52. Sequence homology was assessed using the BLAST algorithm and the GenBank NCBI database. Results and discussion. New data on the structure and occurrence of the differentiation regions RD-8, RD-12, RD-28 of FTT1122c gene and its homologous sequences in strains of tularemia microbe of various subspecies have been obtained. Novel RDhm 346 bp in size, characteristic of strains of the subsp. mediasiatica, holarctica, which is deleted in subsp. tularensis and absent in subsp. novicida has been detected. Based on the detection of the FTT1670, FTT1122с, FTT1067, FTW_2084 loci, a multilocus real-time PCR has been developed – “F. tularensis 4c”, providing for identification of all subspecies of the tularemia microbe, separately for the biovar japonica of the Holarctic subspecies and subpopulations AI, AII of the subspecies tularensis. The PCR specificity was confirmed in the study of strains of tularemia microbe from the fund of the “State Collection of Pathogenic Bacteria” at the premises of the Russian Reserarch Anti-Plague Institute “Microbe”. The results obtained expand the concept of intraspecific genetic heterogeneity of tularemia microbe and possibilities of identifying the causative agent of tularemia using molecular-genetic methods. They are important for understanding the processes of adaptation of the pathogen to circulation in the host organism and environmental objects, the course of evolution and formation of new species of Francisella.

About the Authors

N. A. Osina
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

Natalia A. Osina

46, Universitetskaya St., Saratov, 410005, Russian Federation



D. A. Sitmbetov
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



E. G. Bulgakova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



S. S. Chekmareva
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



E. V. Sazanova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



A. M. Senichkina
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



O. Yu. Lyashova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



A. V. Osin
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



S. A. Shcherbakova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005, Russian Federation



References

1. List of Procariotic names with Standing in Nomenclature (LPSN). (Cited 15 Jan 2023). [Internet]. Available from: http://www.bacterio.net/francisella.html

2. Molins-Schneekloth C.R., Belisle J.T., Petersen J.M. Genomic markers for differentiation of Francisella tularensis subsp. tularensis AI and AII strains. Appl. Environ. Microbiol. 2008; 74(1):336–41. DOI: 10.1128/AEM.01522-07.

3. Gunnell M.K., Lovelace C.D., Satterfield B.A., Moore E.A., O’Neill K.L., Robison R.A. A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies. J. Med. Microbiol. 2012; 61(Pt. 1):1525–31. DOI: 10.1099/jmm.0.046631-0.

4. Tomaso H., Scholz H.C., Neubauer H., Al Dahouk S., Seibold E., Landt O., Forsman M., Splettstoesser W.D. Real-time PCR using hybridization probes for the rapid and specific identification of Francisella tularensis subspecies tularensis. Mol. Cell. Probes. 2007; 21(1):12–6. DOI: 10.1016/j.mcp.2006.06.001.

5. WHO. Guidelines on Tularaemia. WHO Press; 2007. 115 p.

6. Woubit A., Yehualaeshet T., Habtemariam T., Samuel T. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered food-borne pathogens. J. Food Prot. 2012; 75(4):660–70. DOI: 10.4315/0362-028X.JFP-11-480.

7. Broekhuijsen M., Larsson P., Johansson A., Byström M., Eriksson U., Larsson E., Prior R.G., Sjöstedt A., Titball R.W., Forsman M. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin. Microbiol. 2003; 41(7):2924–31. DOI: 10.1128/JCM.41.7.2924-2931.2003.

8. Osina N.A., Moshkova M.S., Utkin D.V., Lyashova O.Yu., Kulichenko A.N. [Identification of subspecies of the tularemia microbe multiplex polymerase chain reaction]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2007; (1):92–3.

9. Vakhrameeva G.M., Lapin A.A., Pavlov V.M., Mokrievich A.N., Mironova R.I., Dyatlov I.A. [PCR differentiation of Francisella tularensis subspecies using one primer]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2011; 1(107):46–8. DOI: 10.21055/0370-1069-2011-1(107)-46-48.

10. Larson M.A., Sayood K., Bartling A.M., Meyer J.R., Starr C., Baldwin J., Dempsey M.P. Differentiation of Francisella tularensis subspecies and subtypes. J. Clin. Microbiol. 2020. 58(4):e01495-19. DOI: 10.1128/JCM.01495-19.

11. Birdsell D.N., Vogler A.J., Buchhagen J., Clare A., Kaufman E., Naumann A., Driebe E., Wagner D.M., Keim P.S. TaqMan realtime PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations. PLoS One. 2014; 9(9):e107964. DOI: 10.1371/journal.pone.0107964.

12. Sorokin V.M., Vodop’yanov A.S., Tsimbalistova M.V., Pavlovich N.V. [Differentiation of Francisella tularensis subspecies using INDEL typing]. Zhurnal Mikrobiologii, Epidemiologii i Immunologii [Journal of Microbiology, Epidemiology and Immunology]. 2022; 99(2):193–202. DOI: 10.36233/0372-9311-189.

13. Champion M.D., Zeng Q., Nix E.B., Nano F.E., Keim P., Kodira C.D., Borowsky M., Young S., Koehrsen M., Engels R., Pearson M., Howarth C., Larson L., White J., Alvarado L., Forsman M., Bearden S.W., Sjöstedt A., Titball R., Michell S.L., Birren B., Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog. 2009; 5(5):e1000459. DOI: 10.1371/journal.ppat.1000459.

14. Rohmer L., Fong C., Abmayr S., Wasnick M., Larson Freeman T.J, Radey M., Guina T., Svensson K., Hayden H.S., Jacobs M., Gallagher L.A., Manoil C., Ernst R.K., Drees B., Buckley D., Haugen E., Bovee D., Zhou Y., Chang J., Levy R., Lim R., Gillett W., Guenthener D., Kang A., Shaffer S.A., Taylor G., Chen J., Gallis B., D’Argenio D.A., Forsman M., Olson M.V., Goodlett D.R., Kaul R., Miller S.I., Brittnacher M.J. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol. 2007; 8(6):R102. DOI: 10.1186/gb-2007-8-6-r102.

15. LeButt H. The Construction and Use of a Francisella tularensis DNA Microarray. PhD thesis The Open University. 2008. DOI: 10.21954/ou.ro.0000fd6f.

16. Sarva S.T., Waldo R.H., Belland R.J., Klose K.E. Comparative transcriptional analyses of Francisella tularensis and Francisella novicida. PLoS One. 2016; 11(8):e0158631. DOI: 10.1371/journal. pone.0158631.

17. Samrakandi M.M., Zhang C., Zhang M., Nietfeldt J., Kim J., Iwen P.C., Olson M.E., Fey P.D., Duhamel G.E., Hinrichs S.H., Cirillo J.D., Benson A.K. Genome diversity among regional populations of Francisella tularensis subspecies tularensis and Francisella tularensis subspecies holarctica isolated from the US. FEMS Microbiol. Lett. 2004; 237(1):9–17. DOI: 10.1016/j.femsle.2004.06.008.

18. Johansson A., Farlow J., Larsson P., Dukerich M., Chambers E., Byström M., Fox J., Chu M., Forsman M., Sjöstedt A., Keim P. Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J. Bacteriol. 2004; 186(17):5808–18. DOI: 10.1128/JB.186.17.5808–5818.2004.

19. Chandler J.C., Molins C.R., Petersen J.M., Belisle J.T. Differential chitinase activity and production within Francisella species, subspecies, and subpopulations. J. Bacteriol. 2011; 193(13):3265–75. DOI: 10.1128/JB.00093-11.

20. Osina N.A., Utkin D.V., Senichkina A.M., Bugorkova T.V., Kutyrev V.V. [A panel of bacterial strains of the species Francisella tularensis for obtaining a set of control DNA preparations, a set of DNA preparations for genetic diagnostic studies]. RF patent No. 2443772, publ. 02/27/2012. Bull. No. 6.

21. Barns S.M., Grow C.C., Okinaka R.T., Keim P., Kuske C.R. Detection of diverse new Francisella-like bacteria in environmental samples. Appl. Environ. Microbiol. 2005; 71(9):5494–500. DOI: 10.1128/AEM.71.9.5494-5500.2005.

22. Berrada Z.L., Telford S.R. Diversity of Francisella species in environmental samples from Martha’s Vineyard, Massachusetts. Microb. Ecol. 2010; 59(2):277–83. DOI: 10.1007/s00248-009-9568-y.


Review

For citations:


Osina N.A., Sitmbetov D.A., Bulgakova E.G., Chekmareva S.S., Sazanova E.V., Senichkina A.M., Lyashova O.Yu., Osin A.V., Shcherbakova S.A. Intraspecific Differentiation of Francisella tularensis Strains Using Multilocus Real-Time Polymerase Chain Reaction. Problems of Particularly Dangerous Infections. 2023;(1):132-141. (In Russ.) https://doi.org/10.21055/0370-1069-2023-1-132-141

Views: 461


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)