Preview

Problems of Particularly Dangerous Infections

Advanced search

Cholera Bacteriophages: History of Discovery, Structure and Application

https://doi.org/10.21055/0370-1069-2024-4-42-53

Abstract

Viruses that affect cholera vibrio, or cholera bacteriophages, were discovered in early twentieth century, when the sixth cholera pandemic was raging in Southeast Asia, the Far and Middle East and Europe. This discovery marked the beginning of intensive study of cholera bacteriophages as a promising means in the fight against cholera. The review highlights issues related to the history of the discovery and study of cholera bacteriophages and describes the features of their structure and life cycle. A co-evolutionary strategy for the interaction of cholera bacteriophages with Vibrio cholerae cells, called the “Red Queen dynamics”, is presented. According to this strategy, strains of V. cholerae and cholera bacteriophages, in order to survive, must constantly evolve and adapt, acquiring more and more new systems for defense from each other. The review also provides information about the main currently known anti-phage systems of V. cholerae (mutational changes in the receptor apparatus, release of outer membrane vesicles, restriction-modification system, PLE element, SXT elements, BREX bacteriophage exclusion system and CRISPR/Cas systems, Abi-strategy). Phage counter-defense systems are presented (CRISPR/Cas system, Odn nuclease, epigenetic modification by methylase, BREX countermeasures system). The papaer analyzes the practical application of cholera bacteriophages in the diagnosis of cholera (for identification, determination of the biovar of the pathogen, its virulence and epidemic significance), and outlines the most well-known phage typing schemes. Promising strategies for the use of cholera bacteriophages in phage therapy and phage prevention of cholera are characterized. The effects of combined use of phages and antibiotics in complex therapy are considered separately.

About the Authors

N. B. Cheldyshova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

Nadezhda B. Cheldyshova

46, Universitetskaya St., Saratov, 410005



S. P. Zadnova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



E. G. Abramova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



A. K. Nikiforov
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



Z. L. Devdariani
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



References

1. Ikonnikova N.V. [Bacteriophages are Bacterial Viruses]. Minsk: Information Accounting Center of the Ministry of Finance; 2017. 41 p.

2. Adamov A.K., Naumshina M.S. [Cholera Vibrios]. Saratov: Publishing house of the Saratov University; 1984. 328 p.

3. Lomov Yu.M., Somova A.G., Kudryakova T.A. [Cholera Phages]. Rostov-on-Don; 1990. 160 p.

4. Łusiak-Szelachowska M., Międzybrodzki R., Drulis- Kawa Z., Cater K., Knežević P., Winogradow C., Amaro K., Jończyk-Matysiak E., Weber-Dąbrowska B., Rękas J., Górski A. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J. Biomed. Sci. 2022; 29(1):23. DOI: 10.1186/s12929-022-00806-1.

5. Li X., Hu T., Wei J., He Y., Abdalla A.E., Wang G., Li Y., Teng T. Characterization of a novel bacteriophage Henu2 and evalu- ation of the synergistic antibacterial activity of phage-antibiotics. Antibiotics (Basel). 2021; 10(2):174. DOI: 10.3390/antibiotics10020174.

6. Li X., He Y., Wang Z., Wei J., Hu T., Si J., Tao G., Zhang L., Xie L., Abdalla A.E., Wang G., Li Y., Teng T. A combination therapy of phages and antibiotics: two is better than one. Int. J. Biol. Sci. 2021; 17(13):3573–82. DOI: 10.7150/ijbs.60551.

7. Drulis-Kawa Z., Majkowska-Skrobek G., Maciejewska B. Bacteriophages and phage-derived proteins – application approa ches. Curr. Med. Chem. 2015; 22(14):1757–73. DOI: 10.2174/0929867322666150209152851.

8. Payne R.J., Jansen V.A. Evidence for a phage prolife ration threshold? J. Virol. 2002; 76(24):13123–4. DOI: 10.1128/ jvi.76.24.13123-13124.2002.

9. Alonso J.C., Sarachu A.N., Grau O. DNA gyrase inhibitors block development of Bacillus subtilis bacteriophage SP01. J. Virol. 1981; 39(3):855–60. DOI: 10.1128/JVI.39.3.855-860.1981.

10. Abedon S.T., Thomas-Abedon C., Thomas A., Mazure H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? Bacteriophage. 2011; 1(3):174–8. DOI: 10.4161/bact.1.3.16591.

11. Letarov A.V. [History of early research on bacteriophages and the birth of basic concepts in virology]. Biokhimiya [Biochemistry]. 2020; 85(9):1189–212. DOI: 10.31857/S0320972520090031.

12. Gorshenin A.V. [Participation of microbiologists, Z.V. Ermol’eva and L.M. Yakobson, in a scientific discussion about the fate of the production of Soviet cholera bacteriophages in 1967]. Samarsky Nauchny Vestnik [Samara Scientific Bulletin]. 2021; 10(4):201–7. DOI: 10.17816/snv2021104211.

13. Krupovic M., Prangishvili D., Hendrix R.W., Bamford D.H. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 2011; 75(4):610– 35. DOI: 10.1128/MMBR.00011-11.

14. Waldor M.K., Mekalanos J.J. Lysogenic conversion by a filamentous phage encoding cholerae toxin. Science. 1996; 272(5270):1910–4. DOI: 10.1126/science.272.5270.1910.

15. Boyd C.M., Angermeyer A., Hays S.G., Barth Z.K., Patel K.M., Seed K.D. Bacteriophage ICP1: a persistent predator of Vibrio cholerae. Annu. Rev. Virol. 2021; 8(1):285–304. DOI: 10.1146/ annurev-virology-091919-072020.

16. Zadnova S.P., Plekhanov N.A., Spirina A.Yu., Shvidenko I.G., Savel’ev V.N. [Detection of phage-induced mobile genetic elements in strains of Vibrio cholerae O1 biovar El Tor]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2023; (2):112–9. DOI: 10.21055/0370-1069-2023-2-112-119.

17. Giri N. Bacteriophage structure, classification, assembly and phage therapy. Biosci. Biotech. Res. Asia. 2021; 18(2):239–50. DOI: 10.13005/bbra/2911.

18. Ilyina T.S. [Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria]. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 2015; (1):3–10. DOI: 10.3103/S0891416815010036.

19. Phage Population Dynamics. In: Nicastro J., Wong S., Khazaei Z., Lam P., Blay J., Slavcev R.A. Bacteriophage Applications – Historical Perspective and Future Potential. Part of SpringerBriefs in Biochemistry and Molecular Biology. Springer; 2016. P. 44–5. DOI: 10.1007/978-3-319-45791-8_5.

20. Turner D., Shkoporov A.N., Lood C., Millard A.D., Dutilh B.E., Alfenas-Zerbini P., van Zyl L.J., Aziz R.K., Oksanen H.M., Poranen M.M., Kropinski A.M., Barylski J., Brister J.R., Chanisvili N., Edwards R.A., Enault F., Gillis A., Knezevic P., Krupovic M., Kurtböke I., Kushkina A., Lavigne R., Lehman S., Lobocka M., Moraru C., Moreno Switt A., Morozova V., Nakavuma J., Reyes Muñoz A., Rūmnieks J., Sarkar B.L., Sullivan M.B., Uchiyama J., Wittmann J., Yigang T., Adriaenssens E.M. Abolishment of morpho logy-based taxa and change to binomial species names: 2022 taxo nomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023; 168(2):74. DOI: 10.1007/s00705-022-05694-2.

21. Casjens S.R., Gilcrease E.B. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailedbacteriophage virions. Methods Mol. Boil. 2009; 502:91–111. DOI: 10.1007/978-1-60327-565-1_7.

22. Shen X., Zhang J., Xu J., Du P., Pang B., Li J., Kan B. The resistance of Vibrio cholerae O1 El Tor Strains to the typing phage 919TP, a member of K139 phage family. Front. Microbiol. 2016; 7:726. DOI: 10.3389/fmicb.2016.00726.

23. LeGault K.N., Hays S.G., Angermeyer A., McKitterick A.C., Johura F.T., Sultana M., Ahmed T., Alam M., Seed K.D. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science. 2021; 373(6554):eabg2166. DOI: 10.1126/science.abg2166.

24. Catalão M.J., Gil F., Moniz-Pereira J., São-José C., Pimentel M. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol. Rev. 2013; 37(4):554–71. DOI: 10.1111/1574-6976.12006.

25. Hays S.G., Seed K.D. Dominant Vibrio cholerae phage ex- hibits lysis inhibition sensitive to disruption by a defensive phage satellite. Elife. 2020; 9:e53200. DOI: 10.7554/eLife.53200.

26. Loh B., Kuhn A., Leptihn S. The fascinating biology be- hind phage display: filamentous phage assembly. Mol. Microbiol. 2019; 111(5):1132–8. DOI: 10.1111/mmi.14187.

27. Rakonjac J., Bennett N.J., Spagnuolo J., Gagic D., Russel M. Filamentous bacteriophage: biology, phage display and nanotechno logy applications. Curr. Issues Mol. Biol. 2011; 13(2):51–76.

28. Smirnova N.I., Kul’shan T.A., Cheldyshova N.B., Osin A.V. [Structural and functional changes in the genome of the cholera agent in the aquatic environment]. Epidemiologiya i Infektsionnye Bolezni [Epidemiology and Infectious Diseases]. 2007; (5):22–8.

29. Pathania A., Hopper C., Pandi A., Függer M., Nowak T., Kushwaha M. A synthetic communication system uncovers extracel- lular immunity that self-limits bacteriophage transmission. bioRxiv. 2022; 5(11):1–29. DOI: 10.1101/2022.05.11.491355.

30. Lenski R.E. Dynamics of interactions between bacteria and virulent bacteriophage. In: Marshall K.C., editor. Advances in Microbial Ecology. 1988. Vol. 10. P. 1–44. DOI: 10.1007/978-1-4684-5409-3_1.

31. Davis B.M., Kimsey H.H., Kane A.V., Waldor M.K. A sa tellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 2002; 21(16):4240–9. DOI: 10.1093/emboj/cdf427.

32. Zingl F.G., Kohl P., Cakar F., Leitner D.R., Mitterer F., Bonnington K.E., Rechberger G.N., Kuehn M.J., Guan Z., Reidl J., Schild S. Outer membrane vesiculation facilitates surface exchange and in vivo adaptation of Vibrio cholerae. Cell Host Microbe. 2020; 27(2):225–237.e8. DOI: 10.1016/j.chom.2019.12.002.

33. Barth Z.K., Silvas T.V., Angermeyer A., Seed K.D. Genome replication dynamics of a bacteriophage and its satellite reveal stra tegies for parasitism and viral restriction. Nucleic Acids Res. 2020; 48(1):249–63. DOI: 10.1093/nar/gkz1005.

34. Zadnova S.P., Plekhanov N.A., Spirina A.Yu., Cheldyshova N.B. [Analysis of anti-phage systems in Vibrio cholerae O1 El Tor strains]. Zdorov’e Naseleniya i Sreda Obitaniya [Public Health and Life Environment]. 2023; 31(11):94–100. DOI: 10.35627/2219-5238/2023-31-11-94-100.

35. Goldfarb T., Sberro H., Weinstock E., Cohen O., Doron S., Charpak-Amikam Y., Afik S., Ofir G., Sorek R. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 2015; 34(2):169–83. DOI: 10.15252/embj.201489455.

36. Lopatina A., Tal N., Sorek R. Abortive infection: bacte- rial suicide as an antiviral immune strategy. Annu. Rev. Virol. 2020; 7(1):371–84. DOI: 10.1146/annurev-virology-011620-040628.

37. Barth Z.K., Nguyen M.H., Seed K.D. A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence-speci fic immunity against subviral parasites. Elife. 2021; 10:e68339. DOI: 10.7554/eLife.68339.

38. Petrov V.M., Ratnayaka S., Nolan J.M., Miller E.S., Karam J.D. Genomes of the T4-related bacteriophages as win- dows on microbial genome evolution. Virol. J. 2010; 7:292. DOI: 10.1186/1743-422X-7-292.

39. Seed K.D., Yen M., Shapiro B.J., Hilaire I.J., Charles R.C., Teng J.E., Camilli A. Evolutionary consequences of intra-patient phage predation on microbial populations. Elife. 2014; 3:e03497. DOI: 10.7554/eLife.03497.

40. Pogozhova M.P., Gaevskaya N.E., Vodop’yanov A.S., Pisanov R.V., Anoprienko A.O., Romanova L.V., Tyurina A.V. [Biological properties and genetic characteristics of experimental diagnostic Vibrio cholerae bacteriophages]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 2021; 98(3):290–7. DOI: 10.36233/0372-9311-39.

41. Pogozhova M.P., Gaevskaya N.E., Tyurina A.V., Anoprienko A.O. [Creation of a collection of pathogenic vib rio phages and its use for diagnostic and preventive purposes]. Vestnik Biotekhnologii i Fiziko-Khimicheskoj Biologii imeni Yu.A. Ovchinnikova [Bulletin of Biotechnology and Physico-Chemical Biology named after Yu.A. Ovchinnikov]. 2023; 19(3):37–45.

42. CDC. Laboratory methods for the diagnosis of Vibrio cho lerae. (Cited 27 Feb 2024). [Internet]. Available from: https://stacks. cdc.gov/view/cdc/52473/cdc_52473_DS1.pdf?download-documentsubmit=Download.

43. Ostroumova N.M., Moroz V.P., Karavaeva T.B., Korovkina G.I., Gracheva I.V. [Intraspecific differentiation of Vibrio cholerae into toxigenic (Vct+ ) and non-toxigenic (Vct– ) variants according to the immunotype of their temperate phages]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 1993; (4):116–20.

44. Chattopadhyay D.J., Sarkar B.L., Ansari M.Q., Chakrabarti B.K., Roy M.K., Ghosh A.N., Pal S.C. New phage typing scheme for Vibrio cholerae O1 biotype El Tor strains. J. Clin. Microbiol. 1993; 31(6):1579–85. DOI: 10.1128/jcm.31.6.1579-1585.1993.

45. Sarkar B.L., De S.P., Saha M.R., Niyogi S.K., Roy M.K. Validity of new phage typing scheme against Vibrio cholerae 01 bio- type ElTor strains. Indian J. Med. Res. 1994; 99:159–61.

46. Gao S., Wu S., Liu B. Characteristics of typing phages of Vibrio cholerae biotype El Tor. Fu Huo Luan Zi Liao Hui Bian. 1984; 4:237–45.

47. Chakrabarti A.K., Ghosh A.N., Nair G.B., Niyogi S.K., Bhattacharya S.K., Sarkar B.L. Development and evaluation of a phage typing scheme for Vibrio cholerae O139. J. Clin. Microbiol. 2000; 38(1):44–9. DOI: 10.1128/JCM.38.1.44-49.2000.

48. Rowe B., Frost J.A. Vibrio phages and phage-typing. In: Barua D., Greenough W.B., editors. Cholera. Part of Current Topics in Infectious Disease. Springer, Boston, MA; 1992. P. 95–105. DOI: 10.1007/978-1-4757-9688-9_5.

49. Yen M., Camilli A. Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates. Int. Microbiol. 2017; 20(3):116–20. DOI: 10.2436/20.1501.01.292.

50. Plankina Z.A., Nikonov A.G., Sayamov R.M., Kotlyarova R.I. [Fighting cholera in Afghanistan]. Zhurnal Mikro biologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 1961; (32):202–4

51. Monsur K.A., Rahman M.A., Huq F., Islam M.N., Northrup R.S., Hirschhorn N. Effect of massive doses of bacteriophage on ex- cretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera. Bull. World Health Organ. 1970; 42(5):723–32.

52. Marcuk L.M., Nikiforov V.N., Scerbak J.F., Levitov T.A., Kotljarova R.I., Naumsina M.S., Dovydov S.U., Monsur K.A., Rahman M.A., Latif M.A., Northrup R.S., Cash R.A., Huq I., Dey C.R., Phillips R.A. Clinical studies of the use of bacteriophage in the treatment of cholera. Bull. World Health Organ. 1971; 45(1):77–83.

53. Jaiswal A., Koley H., Ghosh A., Palit A., Sarkar B. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect. 2013; 15(2):152–6. DOI: 10.1016/j. micinf.2012.11.002.

54. Bhandare S., Colom J., Baig A., Ritchie J.M., Bukhari H., Shah M.A., Sarkar B.L., Su J., Wren B., Barrow P., Atterbury R.J. Reviving phage therapy for the treatment of cholera. J. Infect. Dis. 2019; 219(5):786–94. DOI: 10.1093/infdis/jiy563.

55. Chakrabarti A.K., Biswas A., Tewari D.N., Mondal P.P., Dutta S. Phage types of Vibrio cholerae O1 biotype ElTor strains isolated from India during 2012–2017. J. Glob. Infect. Dis. 2020; 12(2):94–100. DOI: 10.4103/jgid.jgid_42_19.

56. Bochkareva S.S., Aleshkin A.V., Ershova O.N., Novikova L.I., Karaulov A.V., Kiseleva I.A., Zul’karneev E.R., Rubal’sky E.O., Zeigarnik M.V. [Humoral immune response to bacteriophages during phage therapy of healthcare-associated infections (HAIs)]. Infektsionnye Bolezni [Infectious Diseases]. 2017; 15(1):35–40. DOI: 10.20953/1729-9225-2017-1-35-40.

57. [Decision of the Council of the Eurasian Economic Commission dated November 3, 2016 No. 89 “On approval of the Rules for conducting research on biological medicinal products of the Eurasian Economic Union”]. (Cited 26 Feb 2024). [Internet]. Available from: https://www.garant.ru/products/ipo/prime/doc/71446406/#review.

58. Tyurina A.V., Gaevskaya N.E., Selyanskaya N.A., Egiazaryan L.A., Pogozhova M.P., Golovin S.N., Pasyukova N.I. [Activity of the bacteriophage preparation against antibiotic-resistant strains of Vibrio cholerae]. Antibiotiki i Khimioterapiya [Antibiotics and Chemotherapy]. 2018; 63(7-8):29–32.

59. Anoprienko A.O., Tyurina A.V., Gaevskaya N.E., Pogozhova M.P. [Creation of an experimental prophylactic drug based on cholera bacteriophages]. Vestnik Biotekhnologii i Fiziko- Khimicheskoj Biologii imeni Yu.A. Ovchinnikova [Bulletin of Biotechnology and Physical-Chemical Biology named after Yu.A. Ovchinnikov]. 2020; 16(3):10–3.

60. Ivanova I.A., Gaevskaya N.E., Tyurina A.V., Omel’chenko N.D., Filippenko A.V., Trufanova A.A. Method for preventing cho lera using bacteriophages. RF Patent No. 2783000, publ. 08 Nov 2022. Bull. No. 31.


Review

For citations:


Cheldyshova N.B., Zadnova S.P., Abramova E.G., Nikiforov A.K., Devdariani Z.L. Cholera Bacteriophages: History of Discovery, Structure and Application. Problems of Particularly Dangerous Infections. 2024;(4):42-53. (In Russ.) https://doi.org/10.21055/0370-1069-2024-4-42-53

Views: 598


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)