Occurrence of Genetic Determinants Associated with Attenuation in Wild-Type Strains of the Tularemia Microbe
https://doi.org/10.21055/0370-1069-2025-2-134-144
Abstract
The aim of our work was to determine genetic markers associated with attenuation (deletions in RD-18, RD-19 positions, single mutations) in natural strains of the causative agent of tularemia. Materials and methods. The work used 107 Francisella tularensis strains from the State Collection of Pathogenic Bacteria of the Russian Anti-Plague Institute “Microbe”, as well as 1077 F. tularensis genomes provided by the NCBI GenBank database. Cultivation was carried out on Petri dishes with FT-agar (State Research Center of Applied Microbiology and Biotechnology), pH 7.2; the cultures were incubated for 36–48 h at a temperature of (37±1) °С. The draft genome was assembled using the Unicycler v.0.4.7 software package. The snippy v.4.6.0 program was used to obtain a matrix of core SNPs. The dendrogram was drawn in the PhyML program using the Likelihood method with the GTR substitution model. Results and discussion. Among the studied strains of tularemia microbe, eleven erythromycin-resistant strains of F. tularensis of the phylogenetic groups B.12 B.24 and B.12 B.20 were identified, containing deletions in the RD-18 and RD-19 regions. Erythromycinresistant and erythromycin-sensitive cultures of the pathogen of the groups B.12 B.24, B.12 B.20, B.12 B.39 and B.4, B.6 B.10, B.6 B.7, respectively, were also identified, having a deletion only in the RD-18 region – 11 strains, and only in RD-19 – 8. Of the 11 cultures with deletions in both regions, in 9 cases the strains belonged to the phylogenetic group B.12 B.24 and formed a separate cluster, the remaining two – to B.12 B.20. The cluster of such strains is characterized by the presence of seven unique mutations associated with the formation of lipopolysaccharide, metabolism of aromatic compounds and reproduction in macrophages. Three additional specific mutations have been identified for the B.12 B.24 group strains. We have identified 29 strains of the tularemia pathogen (vaccine ones, their derivatives and natural ones), carrying genetic markers associated with attenuation to varying degrees.
About the Authors
E. A. NaryshkinaRussian Federation
46, Universitetskaya St., Saratov, 410005
N. A. Osina
Russian Federation
46, Universitetskaya St., Saratov, 410005
S. D. Katyshev
Russian Federation
46, Universitetskaya St., Saratov, 410005
Ya. M. Krasnov
Russian Federation
46, Universitetskaya St., Saratov, 410005
N. A. Sharapova
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. V. Fedorov
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. D. Katyshev
Russian Federation
46, Universitetskaya St., Saratov, 410005
O. Yu. Lyashova
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. V. Osin
Russian Federation
46, Universitetskaya St., Saratov, 410005
Z. L. Devdariani
Russian Federation
46, Universitetskaya St., Saratov, 410005
S. A. Shcherbakova
Russian Federation
46, Universitetskaya St., Saratov, 410005
References
1. Karlsson E., Golovliov I., Lärkeryd A., Granberg M., Larsson E., Öhrman C., Niemcewicz M., Birdsell D., Wagner D.M., Forsman M., Johansson A. Clonality of erythromycin resistance in Francisella tularensis. J. Antimicrob. Chemother. 2016; 71(10):2815–23. DOI: 10.1093/jac/dkw235.
2. Colquhoun D.J., Larsson P., Duodu S., Forsman M. The family Francisellaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F., editors. The Prokaryotes. Gammaproteobacteria. Berlin, Heidelberg: Springer; 2014. P. 287–314. DOI: 10.1007/978-3-642-38922-1_236.
3. Kudryavtseva T.Yu., Popov V.P., Mokrievich A.N., Kulikalova E.S., Kholin A.V., Mazepa A.V., Borzenko M.A., Cherepanova E.A., Matveeva V.A., Trankvilevsky D.V., Khramov M.V., Dyatlov I.A. [Analysis of the epizootiological and epidemiological situation on tularemia in the Russian Federation in 2023 and forecast for 2024]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2024; (1):17–29. DOI: 10.21055/0370-1069-2024-1-17-29.
4. Kutyrev V.V., Devdariani Z.L., Sayapina L.V. [Current state of scientific research in the field of vaccine prevention of particularly dangerous bacterial infections]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2006; (2):18–24.
5. Sayapina L.V., Bondarev V.P., Olefir Yu.V. [Current state of the vaccine prophylaxis of particularly dangerous infections]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2016; (2):107–10. DOI: 10.21055/0370-1069-2016-2-107-110.
6. Sayapina L.V., Khoreva I.I., Baidalova N.P., Goryaev A.A., Davydov D.S., Postupailo V.B., Merkulov V.A. [Assessment of residual virulence of the Francisella tularensis 15 NIIEG vaccine strain based on long-term observations]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2018; (1):98–102. DOI: 10.21055/0370-1069-2018-1-98-102.
7. Naryshkina E.A., Krasnov Ya.M., Al’khova Zh.V., Badanin D.V., Osin A.V., Lyashova O.Yu., Sayapina L.V., Bondarev V.P., Merkulov V.A., Olefir Yu.V., Kutyrev V.V. [Whole-genome sequencing and phylogenetic analysis of the Francisella tularensis 15 NIIEG vaccine strain]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (2):91–7. DOI: 10.21055/0370-1069-2020-2-91-97.
8. Svensson K., Larsson P., Johansson D., Byström M., Forsman M., Johansson A. Evolution of subspecies of Francisella tularensis. J. Bacteriol. 2005; 187(11):3903–8. DOI: 10.1128/JB.187.11.3903-3908.2005.
9. Jaing C.J., McLoughlin K.S., Thissen J.B., Zemla A., Gardner S.N., Vergez L.M., Bourguet F., Mabery S., Fofanov V.Y., Koshinsky H., Jackson P.J. Identification of genome-wide mutations in ciprofloxacin-resistant F. tularensis LVS using whole genome tiling arrays and next generation sequencing. PLoS One. 2016; 11(9):e0163458. DOI: 10.1371/journal.pone.0163458.
10. Samrakandi M.M., Zhang C., Zhang M., Nietfeldt J., Kim J., Iwen P.C., Olson M.E., Fey P.D., Duhamel G.E., Hinrichs S.H., Cirillo J.D., Benson A.K. Genome diversity among regional populations of Francisella tularensis subspecies tularensis and Francisella tularensis subspecies holarctica isolated from the US. FEMS Microbiol Lett. 2004; 237(1):9–17. DOI: 10.1016/j.femsle.2004.06.008.
11. Larsson P., Svensson K., Karlsson L., Guala D., Granberg M., Forsman M., Johanssont A. Canonical insertion-deletion markers for rapid DNA typing of Francisella tularensis. Emerg. Infect. Dis. 2007; 13(11):1725–32. DOI: 10.3201/eid1311.070603.
12. Vogler A.J., Birdsell D., Price L.B., Bowers J.R., Beckstrom-Sternberg S.M., Auerbach R.K., Beckstrom-Sternberg J.S., Johansson A., Clare A., Buchhagen J.L., Petersen J.M., Pearson T., Vaissaire J., Dempsey M.P., Foxall P., Engelthaler D.M., Wagner D.M., Keim P. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J. Bacteriol. 2009; 191(8): 2474–84. DOI: 10.1128/JB.01786-08.
13. Karlsson E., Svensson K., Lindgren P., Byström M., Sjödin A., Forsman M., Johansson A. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environ. Microbiol. 2013; 15(2):634–45. DOI: 10.1111/1462-2920.12052.
14. Svensson K., Larsson P., Johansson D., Byström M., Forsman M., Johansson A. Evolution of subspecies of Francisella tularensis. J. Bacteriol. 2005; 187(11):3903–8. DOI: 10.1128/JB.187.11.3903-3908.2005.
15. Wick R.R., Judd L.M., Gorrie C.L., Holt K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017; 13(6):e1005595. DOI: 10.1371/journal.pcbi.1005595.
16. Player R.A., Verratti K.J., Grady S.L., Beck L.C., Goodwin B.G., Earnhart C.G., Sozhamannan S. Complete genome sequence of Francisella tularensis live vaccine strain NR-28537 (BEI Master Cell Bank). Microbiol. Resour. Announc. 2020; 9(50):e01248-20. DOI: 10.1128/MRA.01248-20.
17. Shevtsov V., Kairzhanova A., Shevtsov A., Shustov A., Kalendar R., Abdrakhmanov S., Lukhnova L., Izbanova U., Ramankulov Y., Vergnaud G. Genetic diversity of Francisella tularensis subsp. holarctica in Kazakhstan. PLoS Negl. Trop. Dis. 2021; 15(5):e0009419. DOI: 10.1371/journal.pntd.0009419.
18. Rohmer L., Brittnacher M., Svensson K., Buckley D., Haugen E., Zhou Y., Chang J., Levy R., Hayden H., Forsman M., Olson M., Johansson A., Kaul R., Miller S.I. Potential source of Francisella tularensis live vaccine strain attenuation determined by genome comparison. Infect. Immun. 2006; 74(12):6895–906. DOI: 10.1128/IAI.01006-06.
19. Crawford R.M., Van De Verg L., Yuan L., Hadfield T.L., Warren R.L., Drazek E.S., Houng H.H., Hammack C., Sasala K., Polsinelli T.,. Thompson J., Hoover D.L. Deletion of purE attenuates Brucella melitensis infection in mice. Infect. Immun. 1996; 64(6):2188–92. DOI: 10.1128/iai.64.6.2188-2192.1996.
20. Karlsson J., Prior R.G., Williams K., Lindler L., Brown K.A., Chatwell N., Hjalmarsson K., Loman N., Mack K.A., Pallen M., Popek M., Sandström G., Sjöstedt A., Svensson T., Tamas I., Andersson S.G., Wren B.W., Oyston P.C., Titball R.W. Sequencing of the Francisella tularensis strain Schu 4 genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb. Comp. Genomics. 2000; 5(1):25–39. DOI: 10.1089/10906590050145249.
21. Ivánovics G., Marjai E., Dobozy A. The growth of purine mutants of Bacillus anthracis in the body of the mouse. J. Gen. Microbiol. 1968; 53(2):147–62. DOI: 10.1099/00221287-53-2-147.
22. O’Callaghan D., Maskell D., Tite J., Dougan G. Immune responses in BALB/c mice following immunization with aromatic compound or purine-dependent Salmonella typhimurium strains. Immunology. 1990; 69(2):184–9.
23. DeAngelis P.L. Evolution of glycosaminoglycans and their glycosyltransferases: Implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anat. Rec. 2002; 268(3):317–26. DOI: 10.1002/ar.10163.
24. Kahler C.M., Carlson R.W., Rahman M.M., Martin L.E., Stephens D.S. Two glycosyltransferase genes, lgtF and rfaK, constitute the lipooligosaccharide ice (inner core extension) biosynthesis operon of Neisseria meningitidis. J. Bacteriol. 1996; 178(23):6677– 84. DOI: 10.1128/jb.178.23.6677-6684.1996.
25. Phillips N.J., Schilling B., McLendon M.K., Apicella M.A., Gibson B.W. Novel modification of lipid A of Francisella tularensis. Infect. Immun. 2004; 72(9):5340–8. DOI: 10.1128/IAI.72.9.5340-5348.2004.
26. Pavlov V.M., Dyatlov I.A. [Molecular Genetic Studies of Bacteria of the Genus Francisella and Their Applied Significance]. Moscow; 2012. 267 p.
27. Iyer R., Williams C., Miller C. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol. 2003; 185(22):6556–61. DOI: 10.1128/jb. 185.22.6556-6561.2003.
28. Gaisky N.A. [Tularemia Virus Vaccine. 2nd ed]. Irkutsk: Irkutsk regional publishing house; 1948. 111 p.
29. Sandström G. The Tularaemia vaccine. J. Chem. Tech. Biotechnol. 1994; 59(4):315–20. DOI: 10.1002/jctb.2805.
Review
For citations:
Naryshkina E.A., Osina N.A., Katyshev S.D., Krasnov Ya.M., Sharapova N.A., Fedorov A.V., Katyshev A.D., Lyashova O.Yu., Osin A.V., Devdariani Z.L., Shcherbakova S.A. Occurrence of Genetic Determinants Associated with Attenuation in Wild-Type Strains of the Tularemia Microbe. Problems of Particularly Dangerous Infections. 2025;(2):134-144. (In Russ.) https://doi.org/10.21055/0370-1069-2025-2-134-144