Assessment of Resistance to Lytic Effect of Diagnostic Cholera Bacteriophage El Tor in Non-Toxigenic Vibrio cholerae O1 Biovar El Tor Strains with Different Structure of Anti-Phage Systems
https://doi.org/10.21055/0370-1069-2025-2-167-175
Abstract
The aim of the work was to study the presence of anti-phage systems in the genome of non-toxigenic Vibrio cholerae O1 biovar El Tor strains and to determine the resistance of strains with different structures of these systems to the cholera diagnostic bacteriophage El Tor. Materials and methods. The work used 126 non-toxigenic (ctxA– tcpA+ and ctxA– tcpA– ) strains of V. cholerae O1 El Tor, isolated from the external environment and from patients with acute intestinal infections in the territory of the Russian Federation and neighboring countries between 1972 and 2018. Sequencing was performed on the MGI DNBSEQ-G50 platform. The following programs were used for bioinformatics analysis: fastp v0.23, unicycler v0.4.7, Blast 2.16.0 and MEGA X. The interaction of the cholera diagnostic bacteriophage El Tor with the surface of bacteria was studied using atomic force microscopy. Results and discussion. Phageinduced PLE islands and BREX systems were not detected in the genome of the studied strains. At the same time, 75 % of ctxA– tcpA+ strains contain type I restriction-modification genes, while those genes were not detected in ctxA– tcpA– strains. The CBASS-system genes are present in single strains of both groups. The presence of type I CRISPR-Cas system was established in the genome of 36 (33 %) ctxA– tcpA– strains isolated in different regions of our country. Moreover, 78 % of strains containing this system are resistant to the cholera diagnostic bacteriophage El Tor. Thus, heterogeneity of the studied non-toxigenic strains of V. cholerae O1 El Tor in regard to the presence of anti-phage systems has been established, which expands the knowledge on their genetic organization. Non-toxigenic ctxAB– tcpA– strains of V. cholerae O1 El Tor are more resistant to the lytic action of the diagnostic cholera bacteriophage El Tor than ctxAB– tcpA+ strains. One of the reasons for such resistance may be the presence of the type I CRISPR-Cas system.
About the Authors
D. A. SergutinRussian Federation
46, Universitetskaya St., Saratov, 410005
N. A. Plekhanov
Russian Federation
46, Universitetskaya St., Saratov, 410005
N. B. Cheldyshova
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. V. Osin
Russian Federation
46, Universitetskaya St., Saratov, 410005
E. Yu. Shchelkanova
Russian Federation
46, Universitetskaya St., Saratov, 410005
A. V. Fedorov
Russian Federation
46, Universitetskaya St., Saratov, 410005
Ya. M. Krasnov
Russian Federation
46, Universitetskaya St., Saratov, 410005
S. P. Zadnova
Russian Federation
46, Universitetskaya St., Saratov, 410005
References
1. Bhandari M., Jennison A.V., Rathnayake I.U., Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae – A review. Infect. Genet. Evol. 2021; 89:e104726. DOI: 10.1016/j. meegid.2021.104726.
2. Smirnova N.I., Kul’shan’ T.A., Baranikhina E.Y., Krasnov Y.M., Agafonov D.A., Kutyrev V.V. [Genome structure and origin of nontoxigenic strains of Vibrio cholerae of El Tor biovar with different epidemiological significance]. Genetika[Russian Journal of Genetics]. 2016; 52(9):1029–41. DOI: 10.7868/S0016675816060126.
3. Kruglikov V.D., Levchenko D.A., Titova S.V., Moskvitina E.A., Arkhangelskaya I.V., Gaevskaya N.E., Ezhova M.I. [Vibrio cholerae in the waters of the Russian Federation]. Gigiena i Sanitariya [Hygiene and Sanitation]. 2019; 98(4):393–9. DOI: 10.18821/0016-9900-2019-98-4-393-399.
4. Levchenkо D.А., Kruglikov V.D., Gaevskaya N.E., Vodop’yanov A.S., Nepomnyashchaya N.B. [Pheno- and genotypical features of non-toxigenic strains of cholera vibrios of different origins, isolated in the territory of Russia]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (3):89–96. DOI: 10.21055/0370-1069-2020-3-89-96.
5. Mironova L.V., Bochalgin N.O., Gladkikh A.S., Feranchuk S.I., Ponomareva A.S., Balakhonov S.V. [Phylogenetic affinity and genome structure features of ctxAB– tcpA+ Vibrio cholerae from the surface water bodies in the territory that is non-endemic as regards cholera]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (1):115–23. DOI: 10.21055/0370-1069-2020-1-115-123.
6. Monakhova E.V., Noskov A.K., Kruglikov V.D., Vodop’yanov A.S., Selyanskaya N.A., Men’shikova E.A., Ezhova M.I., Nepomnyashchaya N.B., Shvidenko I.G., Podoinitsyna O.A., Pisanov R.V. [Genotypic characteristics of CTX– VPI+ clonal complexes of Vibrio cholerae O1 found in water bodies of the Rostov region]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2023; (3):99–107. DOI: 10.21055/0370-1069-2023-3-99-107.
7. Popova A.Yu., Noskov A.K., Ezhlova E.B., Kruglikov V.D., Monakhova E.V., Chemisova O.S., Lopatin A.A., Ivanova S.M., Podoynitsyna O.A., Vodop’yanov A.S., Levchenko D.A., Savina I.V. [Epidemiological situation on cholera in the Russian Federation in 2023 and forecast for 2024]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2024; (1):76–88. DOI: 10.21055/0370-1069-2024-1-76-88.
8. Gaievskaya N.E., Makedonova L.D. [The application of bacteriophages in laboratory diagnostic of cholera]. Klinicheskaya Laboratornaya Diagnostika [Clinical Laboratory Diagnostics]. 2016; 61(12):849–52. DOI: 10/1882/0869-2084-2016-61-12-849-852.
9. Pogozhova M.P., Gaevskaya N.E., Vodopyanov A.S., Pisanov R.V., Anoprienko A.O., Romanova L.V., Tyurina A.V. [Biological properties and genetic characteristics of experimental diagnostic Vibrio cholerae bacteriophages]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 2021; 98(3):290–7. DOI: 10.36233/0372-9311-39.
10. Faruque S.M., Mekalanos J.J. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence. 2012; 3(7):556–65. DOI: 10.4161/viru.22351.
11. Angermeyer A., Hays S.G., Nguyen M.H.T., Johura F.T., Sultana M., Alam M., Seed K.D. Evolutionary sweeps of subviral parasites and their phage host bring unique parasite variants and disappearance of a phage CRISPR-Cas system. mBio. 2021; 13(1):e0308821. DOI: 10.1128/mbio.03088-21.
12. Tumban E., editor. Bacteriophages. Methods and Protocols. New York: Humana Press; 2024. 429 p.
13. Labrie S.J., Samson J.E., Moineau S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010; 8(5):317–27. DOI: 10.1038/nrmicro2315.
14. Jermyn W.S., Boyd E.F. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology (Reading). 2002; 148(Pt. 11):3681–93. DOI: 10.1099/00221287-148-11-3681.
15. McDonald N.D., Regmi A., Morreale D.P., Borowski J.D., Boyd E.F. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics. 2019; 20(1):105. DOI: 10.1186/s12864-019-5439-1.
16. O’Hara B.J., Barth Z.K., McKitterick A.C., Seed K.D. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLoS Genet. 2017; 13(6):e1006838. DOI: 10.1371/journal.pgen.1006838.
17. Zadnova S.P., Plekhanov N.A., Spirina A.Yu., Shvidenko I.G., Savel’ev V.N. [Detection of phage-induced mobile genetic elements in strains of Vibrio cholerae O1 biovar El Tor]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2023; (2):112–9. DOI: 10.21055/0370-1069-2023-2-112-119.
18. Zadnova S.P., Plekhanov N.A., Spirina A.Yu., Cheldyshova N.B. [Analysis of antiphage systems in Vibrio cholerae O1 El Tor biotype strains]. Zdorov’e Naseleniya i Sreda Obitaniya [Public Health and Life Environment]. 2023; 31(11):94–100. DOI: 10.35627/22195238/2023-31-11-94-100.
19. McKitterick A.C., Seed K.D. Anti-phage islands force their target phage to directly mediate island excision and spread. Nat. Commun. 2018; 9(1):e2348. DOI: 10.1038/s41467-018-04786-5.
20. Barth Z.K., Silvas T.V., Angermeyer A., Seed K.D. Genome replication dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral restriction. Nucleic Acids Res. 2020; 48(1):249–63. DOI: 10.1093/nar/gkz1005.
21. Wozniak R.A.F., Fouts D.E., Spagnoletti M., Colombo M.M., Ceccarelli D., Garriss G., Déry C., Burrus V., Waldor M.K. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 2009; 5(12):e1000786. DOI: 10.1371/journal.pgen.1000786.
22. LeGault K.N., Hays S.G., Angermeyer A., McKitterick A.C., Johura F.T., Sultana M., Ahmed T., Alam M., Seed K.D. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science. 2021; 373(6554):eabg2166. DOI: 10.1126/ science.abg2166.
23. Brenzinger S., Airoldi M., Ogunleye A.J., Jugovic K., Amstalden M.K., Brochado A.R. The Vibrio cholerae CBASS phage defence system modulates resistance and killing by antifolate antibiotics. Nat. Microbiol. 2024; 9(1):251–62. DOI: 10.1038/s41564-023-01556-y.
24. Utkin D.V., Erokhin P.S., Osina N.A., Konnov N.P. [Assessment of phage lysis of cholera vibrios strains using atomic force microscopy]. Izvestiya Saratovskogo un-ta. Novaya ser. Ser. Khimiya. Biologiya. Ekologiya. Izvestiya Saratovskogo Universiteta. Novaya seriya. Ser. Khimiya. Biologiya. Ekologiya [Bulletin of the Saratov University. New series. Series Chemistry. Biology. Ecology]. 2013; 13(3):8–4.
25. Chun J., Grim C.J., Hasan N.A., Lee J.H., Choi S.Y., Haley B.J., Taviani E., Jeon Y.S., Kim D.W., Lee J.H., Brettin T.S., Bruce D.C., Challacombe J.F., Detter J.C., Han C.S., Munk A.C., Chertkov O., Meincke L., Saunders E., Walters R.A., Huq A., Nairh G.B., Colwell R.R. Comparative genomics reveals mechanism for shortterm and long-term clonal transitions in pandemic Vibrio cholerae. Proc. Natl Acad. Sci. USA. 2009; 106(36):15442–7. DOI: 10.1073/pnas.0907787106.
26. Smirnova N.I., Kulshan T.A., Cheldyshova N.B., Osin A.V. [Structural and functional changes in the genome of the cholera agent in the aquatic environment]. Epidemiologiya i Infektsionnye Bolezni [Epidemiological and Infectious Diseases]. 2007; (5):22–8.
27. Titova S.V., Monakhova E.V. [Potential danger of nontoxigenic Vibrio cholerae strains containing genes for toxin-coregulated pili adhesion]. Epidemiologiya i Infektsionnye Bolezni. Aktual’nye Voprosy [Epidemiology and Infectious Diseases. Current Items]. 2016; (5):65–72.
28. Kritsky A.A., Smirnova N.I., Kalyaeva T.B., Obrotkina N.F., Gracheva I.V., Katyshev A.D., Kutyrev V.V. [Comparative analysis of molecular-genetic properties in non-toxigenic Vibrio cholerae O1 strains biovar El Tor, isolated in Russia and on cholera endemic territories]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2021; (3):72–82. DOI: 10.21055/0370-1069-2021-3-72-82.
29. Savelyev V.N., Kovalev D.A., Savelyeva I.V., Taran T.V., Podoprigora E.I., Vasil’evа O.V., Shapakov N.A., Alekhina Yu.A., Kulichenko A.N. [The evolution of phenotypic properties and molecular-genetic organization of genomes of Vibrio cholerae O1 El Tor variant strains isolated from patients and environmental objects in the Caucasus in 1970–1998]. Zdorov’e Naseleniya i Sreda Obitaniya [Public Health and Life Environment]. 2020; (12):56–61. DOI: 10.35627/2219-5238/2020-333-12-56-61.
Review
For citations:
Sergutin D.A., Plekhanov N.A., Cheldyshova N.B., Osin A.V., Shchelkanova E.Yu., Fedorov A.V., Krasnov Ya.M., Zadnova S.P. Assessment of Resistance to Lytic Effect of Diagnostic Cholera Bacteriophage El Tor in Non-Toxigenic Vibrio cholerae O1 Biovar El Tor Strains with Different Structure of Anti-Phage Systems. Problems of Particularly Dangerous Infections. 2025;(2):167-175. (In Russ.) https://doi.org/10.21055/0370-1069-2025-2-167-175