Preview

Problems of Particularly Dangerous Infections

Advanced search

Bacterial Pangenome

https://doi.org/10.21055/0370-1069-2025-3-18-27

Abstract

This literature review provides an aggregate data on pan-genome studies since the early 2000s. In molecular biology and genetics, pan-genome is the totality of all genetic information on a group of organisms (species or monophyletic group of organisms) under consideration. Pan-genome is structurally divided into the “core genome”, which contains the genes present in all studied genetic sequences, the “accessory genome”, which is genes common to most genomes (10–95 %), and the “cloud genome”, genes that are not present in all representatives of the species, or genes that are present in only one of the genomes or found in less than 10 % of genomes. Some authors also call the cloud genome the “accessory genome”, which contains “unnecessary” genes or strain-specific genes. Also, one of the important indicators of genetic diversity within a taxon is the concept of open and closed pangenomes, which allows us to judge intraspecific diversity, which is associated with various genetic events. Thus, pangenomics is a rapidly developing area at the intersection of microbiology, bioinformatics, epidemiology, which opens up new horizons in research. Due to the improvement of sequencing methods, the concept of one “standard” or “reference” genome may be inconsistent and quite limited, therefore, for a complete understanding of the picture and replenishment of data, it is possible to use the concept of pangenomes.

About the Author

E. Yu. Agafonova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



References

1. Krassowski M., Das V., Sahu S.K., Misra B.B. State of the field in multi-omics research: from computational needs to data mining and sharing. Front. Genet. 2020; 11:610798. DOI: 10.3389/fgene.2020.610798.

2. Vailati-Riboni M., Palombo V., Loor J.J. What are omics sciences? In: Ametaj B., editor. Periparturient Diseases of Dairy Cows. Springer, Cham; 2017. DOI: 10.1007/978-3-319-43033-1_1.

3. Sherman R.M., Salzberg S.L. Pan-genomics in the human genome era. Nat. Rev. Genet. 2020. 21(4):243–54. DOI: 10.1038/s41576-020-0210-7.

4. Tettelin H., Masignani V., Cieslewicz M.J., Donati C., Medini D., Ward N.L., Angiuoli S.V., Crabtree J., Jones A.L., Durkin A.S., Deboy R.T., Davidsen T.M., Mora M., Scarselli M., Margarit y Ros I., Peterson J.D., Hauser C.R., Sundaram J.P., Nelson W.C., Madupu R., Brinkac L.M., Dodson R.J., Rosovitz M.J., Sullivan S.A., Daugherty S.C., Haft D.H., Selengut J., Gwinn M.L., Zhou L., Zafar N., Khouri H., Radune D., Dimitrov G., Watkins K., O’Connor K.J., Smith S., Utterback T.R., White O., Rubens C.E., Grandi G., Madoff L.C., Kasper D.L., Telford J.L., Wessels M.R., Rappuoli R., Fraser C.M. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pangenome”. Proc. Natl Acad. Sci. USA. 2005; 102(39):13950–5. DOI: 10.1073/pnas.0506758102.

5. Medini D., Donati C., Tettelin H., Masignani V., Rappuol R. The microbial pan-genome. Curr. Opin. Genet. Dev. 2005; 15(6):589– 94. DOI: 10.1016/j.gde.2005.09.006.

6. Liao W.W., Asri M., Ebler J., Doerr D., Haukness M., Hickey G., Lu S., Lucas J.K., Monlong J., Abel H.J., Buonaiuto S., Chang X.H., Cheng H., Chu J., Colonna V., Eizenga J.M., Feng X., Fischer C., Fulton R.S., Garg S., Groza C., Guarracino A., Harvey W.T., Heumos S., Howe K., Jain M., Lu T.Y., Markello C., Martin F.J., Mitchell M.W., Munson K.M., Mwaniki M.N., Novak A.M., Olsen H.E., Pesout T., Porubsky D., Prins P., Sibbesen J. A., Sirén J., Tomlinson C., Villani F., Vollger M.R., Antonacci-Fulton L.L., Baid G., Baker C.A., Belyaeva A., Billis K., Carroll A., Chang P.-C., Cody S., Cook D.E., Cook-Deegan R.M., Cornejo O.E., Diekhans M., Ebert P., Fairley S., Fedrigo O., Felsenfeld A.L., Formenti G., Frankish A., Gao Y., Garrison N.A., Giron C.G., Green R.E., Haggerty L., Hoekzema K., Hourlier T., Ji H.P., Kenny E.E., Koenig B.A., Kolesnikov A., Korbel J.O., Kordosky J., Koren S., Lee H., Lewis A.P., Magalhães H., Marco-Sola S., Marijon P., McCartney A., McDaniel J., Mountcastle J., Nattestad M., Nurk S., Olson N.D., Popejoy A.B., Puiu D., Rautiainen M., Regier A.A., Rhie A., Sacco S., Sanders A.D., Schneider V.A., Schultz B.I., Shafin K., Smith M.W., Sofia H.J., Abou Tayoun A.N., Thibaud-Nissen F., Tricom F.F., Wagner J., Walenz B., Wood J.M.D., Zimin A.V., Bourque G., Chaisson M.J.P., Flicek P., Phillippy A.M., Zook J.M., Eichler E.E., Haussler D., Wang T., Jarvis E.D., Miga K.H., Garrison E., Marschall T., Hall I. M., Li H., Paten B. A draft human pangenome reference. Nature. 2023; 617(7960):312–24. DOI: 10.1038/s41586-023-05896-x.

7. Chen S., Wang P., Kong W., Zhang S., Yu J., Wang Y., Jiang M., Lei W., Chen X., Wang W., Gao Y., Qu S., Wang F., Wang Y., Zhang Q., Gu M., Fang K., Ma C., Sun W., Ye N., Wu H., Zhang X. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. Nat. Plants. 2023; 9(12):1986–99. DOI: 10.1038/s41477-023-01565-z.

8. McCarthy C.G.P., Fitzpatrick D.A. Pan-genome analyses of model fungal species. Microb. Genom. 2019; 5(2):e000243. DOI: 10.1099/mgen.0.000243.

9. Li R., Fu W., Su R., Tian X., Du D., Zhao Y., Zheng Z., Chen Q., Gao S., Cai Y., Wang X., Li J., Jiang Y. Towards the complete goat pan-genome by recovering missing genomic segments from the reference genome. Front. Genet. 2019; 10:1169. DOI: 10.3389/fgene.2019.01169.

10. Martinez-Murcia A.J., Benlloch S., Collinset M.D. Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int. J. Syst. Bacteriol. 1992; 42(3):412–21, DOI: 10.1099/00207713-42-3-412.

11. Bergthorsson U., Ochman H. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol. Biol. Evol. 1998; 15(1):6–16. DOI: 10.1093/oxfordjournals.molbev. a025847.

12. Mira A., Martín-Cuadrado A.B., D’Auria G., Rodríguez-Valera F. The bacterial pan-genome: a new paradigm in microbiology. Int. Microbiol. 2010; 13(2):45–57. DOI: 10.2436/20.1501.01.110.

13. Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., Bult C.J., Tomb J.F., Doughert B.A., Merrick J.M., McKenney K., Sutton G., FitzHugh W., Fields C., Gocayn J.D., Scott J., Shirley R., Liu L.I., Glodek A., Kelley J.M., Weidman J.F., Phillips C.A., Spriggs T., Hedblom E., Cotton M.D., Utterback T.R., Hanna M.C., Nguyen D.T., Saudek D.M., Brandon R.C., Fine L.D., Fritchman J.L., Fuhrmann J.L., Geoghagen N.S.M., Gnehm C.L., McDonald L.A., Small K.V., Fraser C.M., Smith H.O., Venter J.C. Whole-genome random sequencing and assembly of Haemophilus influenza Rd. Science. 1995; 269(5223):496–512. DOI: 10.1126/science.7542800.

14. Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H., Oliver S.G. Life with 6000 genes. Science. 1996; 274(5287):546–67. DOI: 10.1126/science.274.5287.546.

15. Blattner F.R., Plunkett G. 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y. The complete genome sequence of Escherichia coli K-12. Science. 1997; 277(5331):1453–62. DOI: 10.1126/science.277.5331.1453.

16. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001. 409:860–921. DOI: 10.1038/35057062.

17. Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises and challenges. Brief. Bioinform. 2018; 19(1):118–135. DOI: 10.1093/bib/bbw089.

18. Tettelin H., Medini D., editors. The Pangenome: Diversity, Dynamics and Evolution of Genomes. Cham, Switzerland: Springer Nature; 2020. 307 p. DOI: 10.1007/978-3-030-38281-0.

19. Pizza M., Scarlato V., Masignani V., Giuliani M.V., Aricò B., Comanducci M., Jennings G.T., Baldi L., Bartolini E., Capecchi B., Galeotti G.L., Luzzi E., Manetti R., Marchetti E., Mora M., Nuti S., Ratti G., Santini L., Savino S., Scarselli M., Storni E., Zuo P., Broeker M., Hundt E., Knapp B., Blair E., Mason T., Tettelin H., Hood D.W., Jeffries A.C., Saunders N.J., Granoff D.M., Venter J.C., Moxon E.R., Grandi G., Rappuoli R. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science. 2000; 287(5459):1816–20. DOI: 10.1126/science.287.5459.1816.

20. Tettelin H., Saunders N.J., Heidelberg J., Jeffries A.C., Nelson K.E., Eisen J.E., Ketchum K.A., Hood D.W., Peden J.F., Dodson R.J., Nelson W.C., Gwinn M.L., DeBoy R., Peterson J.D., Hickey E.K., Haft D.H., Salzberg S.L., White O., Fleischmann R.D., Dougherty B.A., Mason T., Ciecko A., Parksey D.S., Blair E., Cittone H., Clark E.B., Cotton M.D., Utterback T.R., Khouri H., Qin H., Vamathevan J., Gill J., Scarlato V., Masignani V., Pizza M., Grandi G., Sun L., Smith H.O., Fraser C.M., Moxon E.R., Rappuoli R., Venter J.C. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science. 2000; 287(5459):1809–15. DOI: 10.1126/science.287.5459.1809.

21. Snipen L., Ussery D.W. Standard operating procedure for computing pangenome trees. Stand. Genomic. Sci. 2010; 2(1):135– 41. DOI: 10.4056/sigs.38923.

22. Kaas R.S., Friis C., Ussery D.W., Aarestrup F.M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics. 2012; 13:577. DOI: 10.1186/1471-2164-13-577.

23. Mosquera-Rendón J., Rada-Bravo A.M., Cárdenas-Brito S., Corredor M., Restrepo-Pineda E., Benítez-Páez A. Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics. 2016; 17:45. DOI: 10.1186/s12864-016-2364-4.

24. Medini D., Serruto D., Parkhill J., Relman D.A., Donati C., Moxon R., Falkow S., Rappuoli R. Microbiology in the post-genomic era. Nat. Rev. Microbiol. 2008; 6(6):419–30. DOI: 10.1038/nrmicro1901.

25. Vernikos G., Medini D., Riley D.R., Tettelin H. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 2015; 23:148–54. DOI: 10.1016/j.mib.2014.11.016.

26. Golicz A.A., Bayer P.E., Bhalla P.L., Batley J., Edwards D. Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet. 2020; 36(2):132–45. DOI: 10.1016/j. tig.2019.11.006.

27. Costa S.S., Guimarães L.C., Silva A., Soares S.C., Baraúna R.A. First steps in the analysis of prokaryotic pan-genomes. Bioinform. Biol. Insights. 2020; 14:1177932220938064. DOI: 10.1177/1177932220938064.

28. Donati C., Hiller N.L., Tettelin H., Muzzi A., Croucher N.J., Angiuoli S.V., Oggioni M., Dunning Hotopp J.C., Hu F.Z., Riley D.R., Covacci A., Mitchell T.J., Bentley S.D., Kilian M., Ehrlich G.D., Rappuoli R., Moxon E.R., Masignani V. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 2010; 11(10):R107. DOI: 10.1186/gb-2010-11-10-r107.

29. Lefébure T., Stanhope M.J. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 2007; 8(5):R71. DOI: 10.1186/gb-2007-8-5-r71.

30. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol. Syst. Biol. 2006; 2:2006.0007. DOI: 10.1038/msb4100049.

31. Gordienko E.N., Kazanov M.D., Gelfand M.S. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J. Bacteriol. 2013; 195(12):2786–92. DOI: 10.1128/jb.02285-12.

32. Zwick M.E., Joseph S.J., Didelot X., Chen P.E., Bishop-Lilly K.A., Stewart A.C., Willner K., Nolan N., Lentz S., Thomason M.K., Sozhamannan S., Mateczun A.J., Du L., Read T.D. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res. 2012; 22(8):1512– 24. DOI: 10.1101/gr.134437.111.

33. Bazinet A.L. Pan-genome and phylogeny of Bacillus cereus sensu lato. BMC Evol. Biol. 2017; 17(1):176. DOI: 10.1186/s12862-017-1020-1.

34. Keim P., Gruendike J.M., Klevytska A.M., Schupp J.M., Challacombe J., Okinaka R. The genome and variation of Bacillus anthracis. Mol. Aspects. Med. 2009; 30(6):397–405. DOI: 10.1016/j. mam.2009.08.005.

35. Mbengue M., Lo F.T., Diallo A.A., Ndiaye Y.S., Diouf M., Ndiaye M. Pan-genome analysis of Senegalese and Gambian strains of Bacillus anthracis. Afr. J. Biotechnol. 2016; 15(45):2538–46. DOI: 10.5897/AJB2016.14902.

36. Wernegreen J.J. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 2002; 3(11):850–61. DOI: 10.1038/nrg931.

37. Banerjee S., Hess D., Majumder P., Roy D., Das S. The Interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J. Biol. Chem. 2004; 279(22):23782–9. DOI: 10.1074/jbc.M401405200.

38. Gil R., Sabater-Muñoz B., Latorre A., Silva F.J., Moya A. Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc. Natl Acad. Sci. USA. 2002; 99(7):4454–8. DOI: 10.1073/pnas.062067299.

39. Dunbar H.E., Wilson A.C., Ferguson N.R., Moran N.A. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 2007; 5(5):e96. DOI: 10.1371/journal. pbio.0050096.

40. Garrity G., editor. Bergey’s Manual® of Systematic Bacteriology. Vol. 2: The Proteobacteria. Part B: The Gammaproteobacteria. Springer Science, Business Media; 2007. P. 811–22.

41. Escobar-Páramo P., Giudicelli C., Parsot C., Denamur E. The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J. Mol. Evol. 2003; 57(2):140–8. DOI: 10.1007/s00239-003-2460-3.

42. Krasnov Ya.M., Popova A.Yu., Safronov V.A., Fedorov A.V., Badanin D.V., Shcherbakova S.A., Kutyrev V.V. [Genomic diversity analysis of SARS-CoV-2 and epidemiological features of adaptation of COVID-19 agent to human population (Communication 1)]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2020; (3):70–82. DOI: 10.21055/0370-1069-2020-3-70-82.

43. Gong Y.N., Lee K.M., Shih S.R. Evolution and epidemiology of SARS-CoV-2 virus. Methods Mol. Biol. 2022; 2452:3–18. DOI: 10.1007/978-1-0716-2111-0_1.

44. Parlikar A., Kalia K., Sinha S., Patnaik S., Sharma N., Vemuri S.G., Sharma G. Understanding genomic diversity, pan-genome, and evolution of SARS-CoV-2. PeerJ. 2020; 8:e9576. DOI: 10.7717/peerj.9576.

45. Chin C.S., Sorenson J., Harris J.B., Robins W.P., Charles R.C., Jean-Charles R.R., Bullard J., Webster D.R., Kasarskis A., Peluso P., Paxinos E.E., Yamaichi Y., Calderwood S.D., Mekalanos J.J., Schadt E.E., Waldor M.K. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 2011; 364(1):33–42. DOI: 10.1056/NEJMoa1012928.

46. Hasan N.A., Choi S.Y., Eppinger M., Clark P.W., Chen A., Alam M., Haley B.J., Taviani E., Hine E., Su Q., Tallon L.J., Prosper J.B., Furth K., Hoq M.M., Li H., Fraser-Liggett C.M., Cravioto A., Huq A., Ravel J., Cebula T.A., Colwell R.R. Genomic diversity of 2010 Haitian cholera outbreak strains. Proc. Natl Acad. Sci. USA. 2012; 109(29):E2010-7. DOI: 10.1073/pnas.1207359109.

47. Kim E.J., Lee D., Moon S.H., Lee C.H., Kim S.J., Lee J.H., Kim J.O., Song M., Das B., Clemens J.D., Pape J.W., Nair G.B., Kim D.W. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog. 2014; 10(9):e1004384. DOI: 10.1371/journal.ppat.1004384.

48. Mateo-Estrada V., Fernández-Vázquez J.L., Moreno-Manjón J., Hernández-González I.L., Rodríguez-Noriega E., Morfín-Otero R., Alcántar-Curiel M.D., Castillo-Ramírez S. Accessory genomic epidemiology of cocirculating Acinetobacter baumannii clones. mSystems. 2021; 6(4):e0062621. DOI: 10.1128/mSystems.00626-21.

49. Castillo-Ramírez S. Beyond microbial core genomic epidemiology: towards pan genomic epidemiology. Lancet Microbe. 2022; 3(4):e244-e245. DOI: 10.1016/S2666-5247(22)00058-1.

50. Mora M., Donati C., Medini D., Covacci A., Rappuoli R. Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Curr. Opin. Microbiol. 2006; 9(5):532–6. DOI: 10.1016/j.mib.2006.07.003.

51. Donati C., Medini D., Rappuoli R. Pangenomic reverse vaccinology. In: Sintchenko V., editor. Infectious Disease Informatics. Springer, New York; 2010. P. 203–22. DOI: 10.1007/978-1-4419-1327-2_10.

52. Budroni S., Siena E., Dunning Hotopp J.C., Seib K.L., Serruto D., Nofroni C., Comanducci M., Riley D.R., Daugherty S.C., Angiuoli S.V., Covacci A., Pizza M., Rappuoli R., Moxon E.R., Tettelin H., Medini D. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc. Natl Acad. Sci. USA. 2011; 108(11):4494–9. DOI: 10.1073/pnas.1019751108.

53. Ribas-Aparicio R.M., Castelán-Vega J.A., Jiménez-Alberto A., Monterrubio-López G.P., Aparicio-Ozores G. The impact of bioinformatics on vaccine design and development. In: Afrin F., Hemeg H., Ozbak H., editors. Vaccines. InTech; 2017. P. 123–45. DOI: 10.5772/intechopen.69273.

54. Rappuoli R., De Gregorio E., Del Giudice G., Phogat S., Pecetta S., Pizza M., Hanon E. Vaccinology in the post-COVID-19 era. Proc. Natl Acad. Sci. USA. 2021; 118(3):e2020368118. DOI: 10.1073/pnas.2020368118.

55. Masignani V., Pizza M., Moxon E.R. The development of a vaccine against meningococcus B using reverse vaccinology. Front. Immunol. 2019; 10:751. DOI: 10.3389/fimmu.2019.00751.

56. Pizza M., Scarlato V., Masignani V., Giuliani M.M., Aricò B., Comanducci M., Jennings G.T., Baldi L., Bartolini E., Capecchi B., Galeotti C.L., Luzzi E., Manetti R., Marchetti E., Mora M., Nuti S., Ratti G., Santini L., Savino S., Scarselli M., Storni E., Zuo P., Broeker M., Hundt E., Knapp B., Blair E., Mason T., Tettelin H., Hood D.W., Jeffries A.C., Saunders N.J., Granoff D.M., Venter J.C., Moxon E.R., Grandi G., Rappuoli R. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science. 2000; 287(5459):1816–20. DOI: 10.1126/science.287.5459.1816.

57. Dyatlova V.I. [Application of reverse vaccinology methods for developing new vaccines against brucellosis]. Bakteriologiya [Bacteriology]. 2021; 6(4):16–29. DOI: 10.20953/2500-1027-2021-4-16-29.

58. Vishnu U.S., Sankarasubramanian J., Gunasekaran P., Rajendhran J. Novel vaccine candidates against Brucella melitensis identified through reverse vaccinology approach. OMICS. 2015; 9(11):722–9. DOI: 10.1089/omi.2015.0105.

59. Gomez G., Pei J., Mwangi W., Adams L.G., Rice-Ficht A., Ficht T.A. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach. PLoS One. 2013; 8(3):e59751. DOI: 10.1371/journal.pone.0059751.

60. Hisham Y., Ashhab Y. Identification of cross-protective potential antigens against pathogenic Brucella spp. through combining pan-genome analysis with reverse vaccinology. J. Immunol. Res. 2018; 2018:1474517. DOI: 10.1155/2018/1474517.


Review

For citations:


Agafonova E.Yu. Bacterial Pangenome. Problems of Particularly Dangerous Infections. 2025;(3):18-27. (In Russ.) https://doi.org/10.21055/0370-1069-2025-3-18-27

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)