Preview

Problems of Particularly Dangerous Infections

Advanced search

Pathogenicity Factors and Interaction of the Plague Pathogen with the Organism of Warm-Blooded Carriers

https://doi.org/10.21055/0370-1069-2025-3-37-48

Abstract

This paper presents a review of modern domestic and foreign studies on the interaction of the plague pathogen with warm-blooded animals and humans. The molecular basis of the ability of Yersinia pestis to evade and suppress factors of innate and adaptive immunity is considered. Information on the main pathogenicity factors acting at different stages of the disease is provided. The role of lipopolysaccharide (LPS) and the pH6 antigen in evading the host’s immune system at an early stage of infection development is noted, as well as the ability of the plague pathogen to overcome the bactericidal action of serum and reproduce under conditions of iron deficiency. The molecular mechanisms of the pathogen’s counteraction to phagocytosis, the ability to reproduce inside macrophages and express virulence factors, as well as the participation of Ail, Pla adhesins and fraction 1 and pH6 antigens in this process are discussed. The role of the type 3 secretion system as the leading virulence factor of Y. pestis is emphasized. The pleiotropic functions of the effector proteins of the type 3 secretion system are shown. They contribute to the slowing down of phagocytosis or disabling its mechanism, inhibition of signaling pathways of the innate immune system, suppression of inflammatory reactions of the host organism. The ability of Y. pestis to suppress the adaptive immune response through the effect on dendritic cells and T-lymphocytes is discussed. The leading role of LPS in the development of toxic shock in case of plague is noted.

About the Authors

G. A. Eroshenko
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



L. M. Kukleva
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



References

1. Mahmoudi A., Kryštufek B., Sludsky A., Schmid B.V., de Almeida A.M.P., Lei X., Ramasindrazana B., Bertherat E., Yeszhanov A., Stenseth N.C., Mostafavi E. Plague reservoir species throughout the world. Integr. Zool. 2021; 16(6):820–33. DOI: 10.1111/1749-4877.12511.

2. Ansari I., Grier G., Byers M. Deliberate release: Plague – A review. J. Biosaf. Biosecur. 2020; 2(1):10–22. DOI: 10.1016/j. jobb.2020.02.001.

3. Skurnik M., Bengoechea J.A. The biosynthesis and biological role of lipopolysaccharide O-antigens of pathogenic Yersiniae. Carbohydr. Res. 2003; 338(23):2521–9. DOI: 10.1016/s0008-6215-(03)00305-7.

4. Aoyagi K.L., Brooks B.D., Bearden S.W., Montenieri J.A., Gage K.L., Fisher M.A. LPS modification promotes maintenance of Yersinia pestis in fleas. Microbiology (Reading). 2015; 161(Pt. 3):628–38. DOI: 10.1099/mic.0.000018.

5. Rebeil R., Ernst R.K., Jarrett C.O., Adams K.N., Miller S.I., Hinnebusch J.J. Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J. Bacteriol. 2006; 188(4):1381–8. DOI: 10.1128/JB.188.4.1381-1388.2006.

6. Chandler C.E., Harberts E.M., Pelletier M.R., Thaipisuttikul I., Jones J.W., Hajjar A.M., Sahl J.W., Goodlett D.R., Pride A.C., Rasko D.A., Trent M.S., Bishop R.E., Ernst R.K. Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in Yersinia pestis. Proc. Natl Acad. Sci. USA. 2020; 117(37):22984–91. DOI: 10.1073/pnas.1917504117.

7. Atkinson S., Williams P. Yersinia virulence factors – a sophisticated arsenal for combating host defences. F1000Res. 2016; 5:F1000 Faculty Rev-1370. DOI: 10.12688/f1000research.8466.1.

8. Li P., Wang X., Smith C., Shi Y., Wade J.T., Sun W. Dissecting psa locus regulation in Yersinia pestis. J. Bacteriol. 2021; 203(19):e0023721. DOI: 10.1128/JB.00237-21.

9. Seabaugh J.I., Anderson D.M. Pathogenicity and virulence of Yersinia. Virulence. 2024; 15(1):2316439. DOI: 10.1080/21505594.2024.2316439.

10. Perry R.D., Bobrov A.G., Fetherston J.D. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics. 2015; 7(6):965–78. DOI: 10.1039/c4mt00332b.

11. Chaaban T., Mohsen Y., Ezzeddine Z., Ghssein G. Overview of Yersinia pestis metallophores: yersiniabactin and yersinopine. Biology (Basel). 2023; 12(4):598. DOI: 10.3390/biology12040598.

12. Rakin A., Schneider L., Podladchikova O. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia. Front. Cell. Infect. Microbiol. 2012; 2:151. DOI: 10.3389/fcimb.2012.00151.

13. Kuznetsova D.A., Vodop’yanov A.S., Trukhachev A.L., Rykova V.A., Podladchikova O.N. [Analysis of the genetic determinants of yersiniachelin siderophore of Yersinia]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2024; (3):126–32. DOI: 10.21055/0370-1069-2024-3-126-132.

14. Bi Y. Immunology of Yersinia pestis infection. Adv. Exp. Med. Biol. 2016; 918:273–92. DOI: 10.1007/978-94-024-0890-4_10.

15. Uribe-Querol E., Rosales C. Phagocytosis. Methods Mol. Biol. 2024; 2813:39–64. DOI: 10.1007/978-1-0716-3890-3_3.

16. Spinner J.L., Winfree S., Starr T., Shannon J.G., Nair V., Steele-Mortimer O., Hinnebusch B.J. Yersinia pestis survival and replication within human neutrophil phagosomes and uptake of infected neutrophils by macrophages. J. Leukoc. Biol. 2014; 95(3):389–98. DOI: 10.1189/jlb.1112551.

17. O’Loughlin J.L., Spinner J.L., Minnich S.A., Kobayashi S.D. Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect. Immun. 2010; 78(2):773–82. DOI: 10.1128/IAI.00718-09.

18. Connor M.G., Pulsifer A.R., Chung D., Rouchka E.C., Ceresa B.K., Lawrenz M.B. Yersinia pestis targets the host endosome recycling pathway during the biogenesis of the Yersinia-containing vacuole to avoid killing by macrophages. mBio. 2018; 9(1):e01800-17. DOI: 10.1128/mBio.01800-17.

19. Paauw A., Leverstein-van Hall M.A., van Kessel K.P., Verhoef J., Fluit A.C. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS One. 2009; 4(12):e8240. DOI: 10.1371/journal.pone.0008240.

20. Fukuto H.S., Viboud G.I., Vadyvaloo V. The diverse roles of the global transcriptional regulator PhoP in the lifecycle of Yersinia pestis. Pathogens. 2020; 9(12):1039. DOI: 10.3390/pathogens9121039.

21. Pradel E., Lemaître N., Merchez M., Ricard I., Reboul A., Dewitte A., Sebbane F. New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. PLoS Pathog. 2014; 10(3):e1004029. DOI: 10.1371/journal.ppat.1004029.

22. Kolodziejek A.M., Hovde C.J., Minnich S.A. Contributions of Yersinia pestis outer membrane protein Ail to plague pathogenesis. Curr. Opin. Infect. Dis. 2022; 35(3):188–95. DOI: 10.1097/QCO.0000000000000830.

23. Thomson J.J., Plecha S.C., Krukonis E.S. Ail provides multiple mechanisms of serum resistance to Yersinia pestis. Mol. Microbiol. 2019; 111(1):82–95. DOI: 10.1111/mmi.14140.

24. Chauhan N., Wrobel A., Skurnik M., Leo J. Yersinia adhesins: An arsenal for infection. Proteomics Clin. Appl. 2016; 10(9-10):949–63. DOI: 10.1002/prca.201600012.

25. Trunyakova A.S., Vagayskaya A.S., Dentovskaya S.V. [Adhesins of pathogenic Yersinia]. Bakteriologiya [Bacteriology]. 2020; 5(4):39–51. DOI: 10.20953/2500-1027-2020-4-39-51.

26. Zimbler D.L., Schroeder J.A., Eddy J.L., Lathem W.W. Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat. Commun. 2015; 6:7487. DOI: 10.1038/ncomms8487.

27. Sebbane F., Uversky V.N., Anisimov A.P. Yersinia pestis plasminogen activator. Biomolecules. 2020; 10(11):1554. DOI: 10.3390/biom10111554.

28. Banerjee S.K., Crane S.D., Pechous R.D. A dual role for the plasminogen activator protease during the preinflammatory phase of primary pneumonic plague. J. Infect. Dis. 2020; 222(3):407–16. DOI: 10.1093/infdis/jiaa094.

29. Zhang S.S., Park C.G., Zhang P., Bartra S.S., Plano G.V., Klena J.D., Skurnik M., Hinnebusch B.J., Chen T. Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J. Biol. Chem. 2008; 283(46):31511–21. DOI: 10.1074/jbc.M804646200.

30. Eren E., van den Berg B. Structural basis for activation of an integral membrane protease by lipopolysaccharide. J. Biol. Chem. 2012; 287(28):23971–6. DOI: 10.1074/jbc.M112.376418.

31. Krukonis E.S., Thomson J.J. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett. 2020; 594(16):2598–620. DOI: 10.1002/1873-3468.13771.

32. Singh C., Lee H., Tian Y., Schesser Bartra S., Hower S., Fujimoto L.M., Yao Y., Ivanov S.A., Shaikhutdinova R.Z., Anisimov A.P., Plano G.V., Im W., Marassi F.M. Mutually constructive roles of Ail and LPS in Yersinia pestis serum survival. Mol. Microbiol. 2020; 114(3):510–20. DOI: 10.1111/mmi.14530.

33. Derbise A, Pierre F., Merchez M., Pradel E., Laouami S., Ricard I., Sirard J.-C., Fritz J., Lemaître N., Akinbi H., Boneca I.G., Sebbane F. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. J. Infect. Dis. 2013; 207(10):1535–43. DOI: 10.1093/infdis/jit057.

34. Vodopyanov S.O., Mishankin B.N. [Adhesion molecules in Yersinia pestis]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 1985; (6):13–7.

35. Li P., Wang X., Smith C., Shi Y., Wade J.T., Sun W. Dissecting psa locus regulation in Yersinia pestis. J. Bacteriol. 2021; 203(19):e0023721. DOI: 10.1128/JB.00237-21.

36. Bao R., Nair M.K., Tang W.K., Esser L., Sadhukhan A., Holland R.L., Xia D., Schifferli D.M. Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis. Proc. Natl Acad. Sci. USA. 2013; 110(3):1065–70. DOI: 10.1073/pnas.1212431110.

37. Kadnikova L.A., Kopylov P.Kh., Dentovskaya S.V., Anisimov A.P. [Capsular antigen of the plague microbe]. Infektsiya i Immunitet [Infection and Immunity]. 2015; 5(3):201–18. DOI: 10.15789/2220-7619-2015-3-201-218.

38. Peters D.T., Reifs A., Alonso-Caballero A., Madkour A., Waller H., Kenny B., Perez-Jimenez R., Lakey J.H. Unraveling the molecular determinants of the anti-phagocytic protein cloak of plague bacteria. PLoS Pathog. 2022; 18(3):e1010447. DOI: 10.1371/journal.ppat.1010447.

39. Pha K., Navarro L. Yersinia type III effectors perturb host innate immune responses. World J. Biol. Chem. 2016; 7(1):1–13. DOI: 10.4331/wjbc.v7.i1.1.

40. Manisha Y., Srinivasan M., Jobichen C., Rosenshine I., Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol. Rev. Camb. Philos. Soc. 2024; 99(3):837–63. DOI: 10.1111/brv.13047.

41. Souza C.A., Richards K.L., Park Y., Schwartz M., Torruellas Garcia J., Schesser Bartra S., Plano G.V. The YscE/YscG chaperone and YscF N-terminal sequences target YscF to the Yersinia pestis type III secretion apparatus. Microbiology (Reading). 2018; 164(3):338-348. DOI: 10.1099/mic.0.000610.

42. Deng W., Marshall N.C., Rowland J.L., McCoy J.M., Worrall L.J., Santos A.S., Strynadka N.C.J., Finlay B.B. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 2017; 15(6):323–37. DOI: 10.1038/nrmicro.2017.20.

43. Mares C.A., Lugo F.P., Albataineh M., Goins B.A., Newton I.G., Isberg R.R., Bergman M.A. Heightened virulence of Yersinia is associated with decreased function of the YopJ protein. Infect. Immun. 2021; 89(12):e0043021. DOI: 10.1128/IAI.00430-21.

44. Tan Y., Liu W., Zhang Q., Cao S., Zhao H., Wang T., Qi Z., Han Y., Song Y., Wang X., Yang R., Du Z. Yersinia pestis YopK inhibits bacterial adhesion to host cells by binding to the extracellular matrix adaptor protein matrilin-2. Infect. Immun. 2017; 85(8):e01069-16. DOI: 10.1128/IAI.01069-16.

45. Wei T., Gong J., Qu G., Wang M., Xu H. Interactions between Yersinia pestis V-antigen (LcrV) and human Toll-like receptor 2 (TLR2) in a modelled protein complex and potential mechanistic insights. BMC Immunol. 2019; 20(1):48. DOI: 10.1186/s12865-019-0329-5.

46. Rai R., Das B., Choudhary N., Talukdar A., Rao D.N. MAP of F1 and V antigens from Yersinia pestis astride innate and adaptive immune response. Microb. Pathog. 2015; 87:13–20. DOI: 10.1016/j. micpath.2015.07.012.

47. Shannon J.G., Bosio C.F., Hinnebusch B.J. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas. PLoS Pathog. 2015; 11(3):e1004734. DOI: 10.1371/journal.ppat.1004734.

48. Ratner D., Orning M.P., Starheim K.K., Marty-Roix R., Proulx M.K., Goguen J.D., Lien E. Manipulation of interleukin-1-beta and interleukin-18 production by Yersinia pestis effectors YopJ and YopM and redundant impact on virulence. J. Biol. Chem. 2016; 291(19):9894–905. DOI: 10.1074/jbc.M115.697698.

49. Yang R., Atkinson S., Chen Z., Cui Y., Du Z., Han Y., Sebbane F., Slavin P., Song Y., Yan Y., Wu Y., Xu L., Zhang C., Zhang Y., Hinnebusch B.J., Stenseth N.C., Motin V.L. Yersinia pestis and Plague: some knowns and unknowns. Zoonoses. 2023; 3(1):5. DOI: 10.15212/zoonoses-2022-0040.

50. Zhang J., Brodsky I.E., Shin S. Yersinia deploys type III-secreted effectors to evade caspase-4 inflammasome activation in human cells. mBio. 2023; 14(5):e0131023. DOI: 10.1128/mbio.01310-23.

51. Hinnebusch B.J., Jarrett C.O., Bland D.M. “Fleaing” the plague: adaptations of Yersinia pestis to its insect vector that lead to transmission. Annu. Rev. Microbiol. 2017; 71:215–32. DOI: 10.1146/annurev-micro-090816-093521.


Review

For citations:


Eroshenko G.A., Kukleva L.M. Pathogenicity Factors and Interaction of the Plague Pathogen with the Organism of Warm-Blooded Carriers. Problems of Particularly Dangerous Infections. 2025;(3):37-48. (In Russ.) https://doi.org/10.21055/0370-1069-2025-3-37-48

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)