Preview

Problems of Particularly Dangerous Infections

Advanced search

Intraspecific Differentiation of Yersinia pestis Using Mass Spectrometric Analysis

https://doi.org/10.21055/0370-1069-2025-3-86-92

Abstract

The aim of the study was to evaluate approaches and possibilities for differentiating strains of plague agent of the main and non–main subspecies using the method of mass spectrometric analysis.
Materials and methods. 102 strains of Yersinia pestis of 4 subspecies were used in the current work, which were grown on LB agar pH (7.2±0.1) at a temperature of (28±1) °C for (48±1) hours. The mass spectra of the samples were taken automatically with a laser frequency of 60 Hz on a Microflex LT mass spectrometer (Bruker Daltonics, Germany). The spectra were analyzed in the mass range of 2–20 kDa.
Results and discussion. Various approaches to the differentiation of plague microbe strains by subspecies (biovars) using the MALDI-TOF mass spectrometry method have been considered. When using visual analysis for the sample under study, it is not possible to select fragments of the proteinogram that could be considered specific signals for each subspecies or biovar of Y. pestis. Using the cluster analysis of the MALDI Biotyper program, the formation of two separate clusters was noted, including the mass spectra of strains of the main and Caucasian subspecies of the plague microbe. The mass spectra of Y. pestis strains of the central asiatica and ulegeica subspecies are not grouped into separate clusters. When evaluating the informative value of peaks in the mass spectra, it was demonstrated that the same peak has a different weight value for different subspecies (biovars). Thus, the possibility of using different approaches in the analysis of protein profiles of Y. pestis strains for their differentiation by subspecies and/or biovars has been examined.

About the Authors

A. S. Abdrashitova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



A. V. Boiko
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



N. E. Shcherbakova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



E. A. Bil’ko
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



O. A. Koreshkova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



N. S. Chervyakova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

46, Universitetskaya St., Saratov, 410005



References

1. Popova A.Yu., Kutyrev V.V., editors. [Atlas of Natural Plague Foci in Russia and Foreign Countries]. Kaliningrad; 2022. 348 p.

2. Elbehiry A., Marzouk E., Moussa I., Anagreyyah S., AlGhamdi A., Alqarni A., Aljohani A., Hemeg H.A., Almuzaini A.M, Alzaben F., Abalkhail A., Alsubki R.A., Najdi A., Algohani N., Abead B., Gazzaz B., Abu-Okail A. Using protein fingerprinting for identifying and discriminating methicillin resistant Staphylococcus aureus isolates from inpatient and outpatient clinics. Diagnostics (Basel). 2023; 13(17):2825. DOI: 10.3390/diagnostics13172825.

3. Sogawa К., Watanabe M., Ishige T., Segawa S., Miyabe A., Murata S., Saito T., Sanda A., Furuhata K., Nomura F. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus using MALDI-TOF mass spectrometry. Biocontrol Sci. 2017; 22(3):163–9. DOI: 10.4265/bio.22.163.

4. Liu X., Su T., Hsu Y.S., Yu H., Yang H.S., Jiang L., Zhao Z. Rapid identification and discrimination of methicillin-resistant Staphylococcus aureus strains via matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2021; 35(2):8972. DOI: 10.1002/rcm.8972.

5. Wang J., Xia C., Wu Y., Tian X., Zhang K., Wang Z. Rapid detection of carbapenem-resistant Klebsiella pneumonia using machine learning and MALDI-TOF MS platform. Infect. Drug Resist. 2022; 15:3703–10. DOI: 10.2147/IDR.S367209.

6. Spitsyn A.N., Utkin D.V., Kuklev V.E., Portenko S.A., Germanchuk V.G., Osina N.A. [Application of MALDI mass-spectrometry for diagnostics of particularly dangerous infectious diseases: current state of affairs and prospects]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2014; (3):77–82. DOI: 10.21055/0370-1069-2014-3-77-82.

7. Spitsyn A.N., Utkin D.V., Shcherbakova N.E., Portenko S.A., Abdrashitova A.S., Kas’yan I.A., Germanchuk V.G., Kuklev V.E. [MALDI-TOF mass-spectrometry analysis of plague agent strains]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2016; (2):91–4. DOI: 10.21055/0370-1069-2016-2-91-94.

8. Afanasev M.V., Mironova L.V., Basov E.A., Оstyak A.S., Kulikalova E.S., Urbanovich L.Ya., Balahonov S.V. [MALDITOF mass-spectrometric analysis in the accelerated identification of the Vibrio genus microorganisms]. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya [Molecular Genetics, Microbiology and Virology]. 2014; (3):22–9.

9. Telesmanitch N.R., Chaika S.O., Chaika I.A., Goncharenko E.V., Lomov Yu.M. [The mass-spectrometric analysis of MALDI-TOF in identification and typing of cholera vibrio strains]. Klinicheskaya Laboratornaya Diagnostika [Clinical Laboratory Diagnostics]. 2016; 61(6):375–9. DOI: 10.18821/0869-2084-2016-61-6-375-379.

10. Balakhonov S.V., Mironova L.V., Afanas’ev M.V., Kulikalova E.S., Ostyak A.S. [MALDI-ToF mass-spectrometric detection of pathogen specific belonging in improvement of epidemiological surveillance for dangerous infectious diseases]. Bakteriologiya [Baсteriology]. 2016; 1(1):88–94. DOI: 10.20953/2500-1027-2016-1-88-94.

11. Ulshina D.V., Kovalev D.A., Bobrisheva O.V., Ponomarenko D.G., Rusanova D.V., Kovaleva N.I., Kulichenko A.N. [The use of time-of-flight mass spectrometry for diagnosis of brucellosis and interspecific differentiation of strains of Brucella spp.]. Infektsionnye Bolezni: Novosti, Mneniya, Obuchenie [Infectious Diseases: News, Opinions, Training]. 2018; 7(4):15–24. DOI: 10.24411/2305-3496-2018-14002.

12. Koteneva E.A., Kotenev E.S., Kalinin A.V., Tsareva N.S., Cot L.A., Zharinova N.V., Zaitsev A.A., Pechkovsky G.A. [Proteomic profiling of Yersinia pestis strains circulating in the area of natural plague foci of North Caucasus and Transcaucasia]. Zhurnal Mikrobiologii, Epidemiologiii Immunobiologii [Journal of Microbiology, Epidemiology and Immunobiology]. 2019; (4):18–25. DOI: 10.36233/0372-9311-2019-4-18-25.

13. Syngeeva A.K., Ostyak A.S., Kulikalova E.S., Mazepa A.V., Naumova K.V., Balakhonov S.V. [The effectiveness of MALDI ToF mass spectrometry in identification of Francisella tularensis strains]. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2022; (3):145–50. DOI: 10.21055/0370-1069-2022-3-145-150.

14. Boiko A.A., Boiko A.V. [A program for quantifying the informativeness of binary (qualitative) properties (signs) used in differentiating classes of objects and calculating diagnostic coefficients]. Registration number (certificate): 2019619234, published on 15 Jule 2019. Bul. No. 7.

15. Lasch P., Drevinek M., Nattermann H., Grunow R., Stämmler M., Dieckmann R., Schwecke T., Naumann D. Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics. Anal. Chem. 2010; 82(20):8464–75. DOI: 10.1021/ac101036s.

16. Feng B., Shi L., Zhang H., Shi H., Ding C., Wang P., Yu S. Effective discrimination of Yersinia pestis and Yersinia pseudotuberculosis by MALDI-TOF MS using multivariate analysis. Talanta. 2021; 234:122640. DOI: 10.1016/j.talanta.2021.122640.

17. UniProt. (Cited 21 Oct 2024). [Internet]. Available from: https://www.uniprot.org.

18. Afonin P.N., Afonin D.N. [Statistical Analysis Using Modern Software Tools. A Study Guide]. St. Petersburg: IC “Intermedia”; 2017. 100 p.


Review

For citations:


Abdrashitova A.S., Boiko A.V., Shcherbakova N.E., Bil’ko E.A., Koreshkova O.A., Chervyakova N.S. Intraspecific Differentiation of Yersinia pestis Using Mass Spectrometric Analysis. Problems of Particularly Dangerous Infections. 2025;(3):86-92. (In Russ.) https://doi.org/10.21055/0370-1069-2025-3-86-92

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)