Preview

Problems of Particularly Dangerous Infections

Advanced search

Analysis of the Experience of Improving the Safety of Anti-Smallpox Vaccines

https://doi.org/10.21055/0370-1069-2025-4-6-16

Abstract

The epidemiological hazard of orthopoxviruses and the side effects of the used live vaccines are growing, raising the safety requirements for vaccination.

The aim of this review was to analyze ways to improve the safety of smallpox vaccines. Biotechnological improvement of dermovaccines did not enhance safety to an acceptable level and caused the introduction of a large number of restrictions, contraindications, and eventually a ban on their use. The improvement of parenteral vaccines is dominated by the biotechnological trends of safety increment, which, combined with the immunological correction of the vaccination method (two-stage vaccination in Russia or multiple immunization abroad), contributed to achieving acceptable safety requirements for the third generation of smallpox vaccines. The failures of biotechnological improvement of dermovaccines led to the intensification of research on the development of third-generation oral vaccines of the TEOVac type, meeting the principles of safety and effectiveness, and further development of the immunological aspect of higher vaccination safety. The implementation of the immunological course for improving the safety of anti-smallpox vaccines was carried out through the development of oral mucosal vaccines and a two-stage vaccination method. Another problem with the specific prevention of smallpox is the high risk of complications after vaccination. A two-stage or two-fold method of vaccination with epidemiologically effective live vaccines is a universal solution for the relief of such complications. In the USA, a supply of homologous immunoglobulin has been created and chemotherapy drugs are being produced to relieve complications; in the Russian Federation, only the NIOX‑14 drug is currently licensed, and attempts are being made to compensate for the absence of homologous immunoglobulin with a heterologous purified drug. Thus, for Russia, the most effective and promising area for improving the safety of smallpox vaccines is immunological one: the development of a modern oral method of immunization, mucosal vaccines and a two-stage vaccination method. Abroad, the biotechnological trends in improvement of parenteral smallpox vaccines dominate, which is complemented by the immunological one.

About the Authors

S. V. Borisevich
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

Sergey V. Borisevich, 

11, Oktyabrskaya St., Sergiev Posad-6, 141306



A. A. Makhlay
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktyabrskaya St., Sergiev Posad-6, 141306



V. N. Podkuiko
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktyabrskaya St., Sergiev Posad-6, 141306



A. I. Terent’ev
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktyabrskaya St., Sergiev Posad-6, 141306



A. L. Khmelev
48th Central Research Institute of the Ministry of Defense of the Russian Federation
Russian Federation

11, Oktyabrskaya St., Sergiev Posad-6, 141306



A. Yu. Poyarkov
Department of the Chief of Radiation, Chemical and Biological Protection Troops of the Armed Forces of the Russian Federation
Russian Federation

22/2, Frunzenskaya Embankment, Moscow, 119160



References

1. Onishchenko G.G., Semenov B.F., Zverev V.V. [Principles of immunoprophylaxis of new and re-emerging infections]. In: [Healthcare of Russia: Federal Reference Book. Section Russian Healthcare]. Moscow; 2016. P. 121–25. (Cited 25 Jan 2024). [Internet]. Available from: https://федеральный-справочник.рф/files/FSZ/soderghanie/I/immun.pdf.

2. Baddal B., Cakir N. Co-infection of MERS-CoV and SARSCoV-2 in the same host: A silent threat. J. Infect. Pablic Health. 2020; 13(9):1251–52. DOI: 10.1016/j.jiph.2020.06.017.

3. Haller S.L., Peng C., McFadden G., Rothenburg S. Poxviruses and the evolution of host range and virulence. Infect. Genet. Evol. 2014; 21:15–40. DOI: 10.1016/j.meegid.2013.10.014.

4. Michael B.A., Oldstone M.D. Viruses, Plagues, and History. Past, Present and Future. London: Oxford University Press; 2020.

5. Mauldin M.R., McCollum A.M., Nakazawa Y.J., Mandra A., Whitehouse E.R., Davidson W., Zhao H., Gao J., Li Y., Doty J., YinkaOgunleye A., Akinpelu A., Aruna O., Naidoo D., Lewandowski K., Afrough B., Graham V., Aarons E., Hewson R., Vipond R., Dunning J., Chand M., Brown C., Cohen-Gihon I., Erez N., Shifman O., Israeli O., Sharon M., Schwartz E., Beth-Din A., Zvi A., Mak T.M., Ng Y.K., Cui L., Lin R.T.R., Olson V.A., Brooks T., Paran N., Ihekweazu C., Reynolds M.G. Exportation of monkeypox virus from the African continent. J. Infect. Dis. 2022; 225(8):1367–76. DOI: 10./10.1093/infdis/jiaa559.

6. Mucker E.M., Freyn A.W., Bixler S.L., Cizmeci D., Atyeo C., Earl P.L., Natarajan H., Santos G., Frey T.R., Levin R.H., Meni A., Arunkumar G.A., Stadlbauer D., Jorquera P.A., Bennett H., Johnson J.C., Hardcastle K., Americo J.L., Cotter C.A., Koehler J.W., Davis C.I., Shamblin J.D., Ostrowski K., Raymond J.L., Ricks K.M., Carfi A., Yu W.H., Sullivan N.J., Moss B., Alter G., Hooper J.W. Comparison of protection against mpox following mRNA or modified vaccinia Ankara vaccination in nonhuman primates. Cell. 2024; 187(20):5540–53. DOI: 10.1016/j.cell.2024.08.043.

7. Hraib M., Jouni S., Albitar M.M., Alaidi S., Alshehabi Z. The outbreak of monkeypox 2022: An overviev. Ann. Med. Surg. (Lond.). 2022; 79:104069. DOI: 10.1016/j.amsu.2022.104069.

8. Velavan T.P., Meyer C.G. Monkeypox 2022 outbreak: An update. Trop. Med. Int. Health. 2022; 27(7):604–5. DOI: 10.1111/tmi.13785.

9. Сostello V., Sowash M., Gaur A., Cardis M., Pasieka H., Wortmann G., Ramdeen S. Imported monkeypox from International Traveler, Maryland, USA, 2021. Emerg. Infect. Dis. 2022; 28(5):1002–5. DOI: 10.3201/eid2805.220292.

10. Kozlov M. Monkeypox goes global: why scientists are on the alert. Nature. 2022; 606(7912):15–6. DOI: 10.1038/d41586-022-01421-8.

11. Mahase E. Seven monkeypox cases are confirmed in England. BMJ. 2022; 377:o1239. DOI: 10.1136/bmj.o1239.

12. Monkeypox virus infections in the United States and other non-endemic countries 2022. (Cited 26 Jan 2024). [Internet]. Available from: https://www.emergency.cdc.gov/han/2022han00466.asp.

13. Dye С., Kraemer M.U.G. Investigating the monkeypox outbreak. BMJ. 2022; 377:o1314. DOI: 10.l136/bmj.o1314.

14. Silva N.I.O., de Oliveira J.S., Kroon E.G., de Souza Trindade G., Drumond B.P. Here, there, and everywhere: the wide host range and geogrаphic distribution of zoonotic orthopoxviruses. Viruses. 2020; 13(1):43. DOI: 10.3390/v13010043.

15. Supotnitsky M.V. [Monkeypox as a poorly studied biological threat to Russia]. Bulletin of the RCB Defense Forces. 2022; 6(2):152–77. DOI: 10.35825/2587-5728-2022-6-2-152-177.

16. Gruzdev K.N. [Monkeypox and other orthopoxvirus zoonoses]. Veterinariya Segodnya [Veterinary Science Today]. 2022; 11(3):194–202. DOI: 10.29326/2304-196X-2022-11-3-194-202.

17. Gujarati R., Reddy Karumuri S.R., Babu T.N., Janardhan B. A case report of buffalopox: A zoonosis of concern. Indian J. Dermatol. Venereol. Leprol. 2019; 85(3):348. DOI: 10.4103/ijdvl.IJDVL_222_17.

18. Marinaik C.B., Venkatesha M.D., Gomes A.R., Reddy P., Nandini P., Byregowda S.M. Isolation and molecular characterization of zoonotic Buffalopox virus from skin lesions of humans in India. Int. J. Dermatol. 2018; 57(5):590–2. DOI: 10.1111/ijd.13890.

19. Riyesh T., Karuppusamy S., Bera B.C., Barua S., Virmani N., Yadav S., Vaid R.K., Anand T., Bansal M., Malik P., Pahuja I., Singh R.K. Laboratory-acquired buffalopox virus infection, India. Emerg. Infect. Dis. 2014; 20(2):324–6. DOI: 10.3201/eid2002.130358.

20. Dahiya S.S., Kumar S., Mehta S.C., Narnaware S.D., Singh R., Tuteja F.C. Camelpox: A brief review on its epidemiology, current status and challenges. Acta Trop. 2016; 158:32–8. DOI: 10.1016/j.actatropica.2016.02.014.

21. Erster O., Melamed S., Paran N., Weiss S., Khinich Y., Gelman B., Solomony A., Laskar-Levy O. First diagnosed case of camelpox virus in Israel. Viruses. 2018; 10(2):78. DOI: 10.3390/v10020078.

22. Bera B.C., Barua S., Shanmugasundaram K., Anand T., Riyesh T., Vaid R.K., Virmani N., Kundu S., Yadav N.K., Malik P., Singh R.K. Genetic characterization and phylogenetic analysis of host-range genes of camelpox virus isolates from India. VirusDisease. 2015; 26(3):151–62. DOI: 10.1007/s13337-015-0266-8.

23. Khalafalla A.I., Abdelazim F. Human and dromedary camel infection with camelpox virus in Eastern Sudan. Vector Borne Zoonotic Dis. 2017; 17(4):281–4. DOI: 10.1089/vbz.2016.2070.

24. Springer Y.P., Hsu C.H., Werle Z.R., Olson L.E., Cooper M.P., Castrdale L.J., Fowler N., McCollum A.M., Goldsmith C.S., Emerson G.L., Wilkins K., Doty J.B., Burgado J., Gao J.X., Patel N., Mauldin M.R., Reynolds M.G., Satheshkumar P.S., Davidson W., Li Y., McLaughlin J.B. Novel orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 2017; 64(12):1737–41. DOI: 10.1093/cid/cix219.

25. Lanave G., Dowgier G., Decaro N., Albanese F., Brogi E., Parisi A., Losurdo M, Lavazza A., Martella V., Buonavoglia C., Elia G. Novel orthopoxvirus and lethal disease in cat, Italy. Emerg. Infect. Dis. 2018; 24(9):1665–73. DOI: 10.3201/eid2409.171283.

26. Onishchenko G.G., Kirillov I.A., Makhlay A.A., Borisevich S.V. [Orthopoxviruses: past, present, and future]. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk [Bulletin of the Russian Academy of Medical Sciences]. 2020; 75(4):300–5. DOI: 10.15690/vramn1363.

27. [On the Fundamentals of the State Policy of the Russian Federation in the Field of Chemical and Biological Safety for the Period up to 2025 and Beyond]: Decree of the President of the Russian Federation dated March 11, 2019 No. 97. (Cited 1 March 2024). [Internet]. Available from: https://mchs.gov.ru/dokumenty/ukazy-prezidenta-rf/7493?ysclid=mhvu89398963719769.

28. Borisevich S.V., Podkuшko V.N., Pirozhkov A.P., Terent’ev A.I., Krasnyansky V.P., Rozhdestvensky E.V., Nazarov S.V., Kuznetsov S.L. [Evolution of smallpox vaccination means and principles]. Bulletin of the RCB Defense Forces. 2020; 4(1):66–85. DOI: 10.35825/2587-5728-2020-4-1-66-85.

29. Maksyutov R.A., Yakubitsky S.N., Kolosova I.V., Shchelkunov S.N. [Comparison of new-generation candidate vaccines against human oropoxvirus infections]. Acta Naturae. 2017; 9(2):93–9.

30. Perekrest V.V., Movsesyants A.A., Mukhacheva A.V., Shevtsov V.A., Shvedov D.V., Borisevich I.V. [Preparations for specific prophylaxis of smallpox, registered in the Russian Federation]. Biopreparaty [Biopreparations]. 2013; (2):4–13.

31. Zitzmann-Roth E.M., von Sonnenburg F., de la Motte S., Arndtz-Wiedemann N., von Krempelhuber A., Uebler N., Vollmar J., Virgin G., Chaplin P. Cardiac safety of Modified Vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS One. 2015; 10(4):e0122653. DOI: 10.1371/journal.pone.0122653.

32. Greenberg R.N., Hay C.M., Stapleton J.T., Marbury T.C., Wagner E., Kreitmeir E., Röesch S., von Krempelhuber A., Young P., Nichols R., Meyer T.P., Schmidt D., Weigl J., Virgin G., ArndtzWiedemann N., Chaplin P. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of Modified Vaccinia Ankara smallpox vaccine (MVA-BN®) in 56-80-year-old subjects. PLoS One. 2016; 11(6):e0157335. DOI: 10.1371/journal.pone.0157335.

33. Frey S.E., Winokur P.L., Salata R.A., El-Kamary S.S., Turley C.B., Walter E.B. Jr, Hay C.M., Newman F.K., Hill H.R., Zhang Y., Chaplin P., Tary-Lehmann M., Belshe R.B. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for a post event scenario. Vaccine. 2013; 31(29):3025–33. DOI: 10.1016/j.vaccine.2013.04.050.

34. Greenberg R.N., Overton E.T., Haas D.W., Frank I., Goldman M., von Krempelhuber A., Virgin G., Bädeker N., Vollmar J., Chaplin P. Safety, immunogenicity, and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J. Infect. Dis. 2013; 207(5):749–58. DOI: 10.1093/infdis/jis753.

35. Overton E.T., Stapleton J., Frank I., Hassler S., Goepfert P.A., Barker D., Wagner E., von Krempelhuber A., Virgin G., Meyer T.P., Müller J., Bädeker N., Grünert R., Young P., Rösch S., Maclennan J., Arndtz-Wiedemann N., Chaplin P. Safety and immunogenicity of modified vaccinia Ankara-Bavarian Nordic smallpox vaccine in vaccinia-naive and experienced human immunodeficiency virus-infected individuals: An open-label, controlled clinical phase II trial. Open Forum Infect. Dis. 2015; 2(2):ofv040. DOI: 10.1093/ofid/ofv040.

36. Onishchenko G.G., Sizikova T.E., Lebedev V.N., Borisevich S.V. [Comparative characteristics of existing platforms for creating vaccines against dangerous and particularly dangerous viral infections with pandemic potential]. BIOpreparaty. Profilaktika. Diagnostika. Lechenie [BIOpreparations. Prevention, Diagnostics, Treatment]. 2021; 21(4):225–33. DOI: 10.30895/2221-996X-2021-21-4-225-233.

37. Yakubitsky S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. [Recombinant strain of vaccinia virus VACΔ6 with disrupted virulence genes C3L, N1L, J2R, A35R, A56R, B8R for producing a live culture attenuated vaccine against smallpox and other human orthopoxvirus infections]. Patent RU2621868C1, published 07 June 2017. Bulletin No. 16.

38. Shchelkunov S.N., Maksyutov R.A., Gavrilova E.V., Kolosova I.V., Yakubitsky S.N., Tregubchak T.V., Nesterov A.E., Sergeev A.A., Bogryantseva M.L., Danilenko E.D., Nechaeva E.A., Gamaley S.G., Usova S.V. [Live attenuated culture vaccine for the prevention of smallpox and other human orthopoxvirus infections based on vaccinia virus and methods of production and use]. Patent RU2781070C1, published 05 Oct 2022. Bulletin No. 28.

39. Shchelkunov S.N., Shchelkunova G.A. [We must be prepared for the return of smallpox]. Voprosy Virusologii [Problems of Virology]. 2019; 64(5):206–14. DOI: 10.36233/0507-4088-2019-64-5-206-214.

40. Maksyutov R.A., Yakubitsky S.N., Kolosova I.V., Tregubchak T.V., Shvalov N.N., Gavrilova E.V., Shchelkunov S.N. [Genome stability of the vaccine strain VACΔ6]. Vavilovsky Zhurnal Genetiki i Selektsii [Vavilov Journal of Genetics and Breeding]. 2022; 26(4):394–401. DOI: 18699/VJGB-22-48.

41. Nedospasov S.A., Kuprash D.V., editors. [Immunology according to Yarilin: Textbook]. Moscow: “GOETAR-Media”; 2021. 808 p.

42. Medunitsyn N.V., Katlinsky A.V., Vorslov L.O. [Vaccinology]. Moscow: “Practical Medicine”; 2022. 473 p.

43. Mikirtichan G.L. [From the history of vaccination: small-pox vaccination]. Rossiiski Pediotrichesky Zhurnal [Russian Journal of Pediatrics]. 2016; 19(1):55–62. DOI: 10.18821/1560-9561-2016-19(1)-55-62.

44. Medunitsyn N.V. [Vaccinology]. Moscow: ‘Triada-X”; 2010. 448 p.

45. Shamsheva O. V., Uchaikin V. F., Medunitsyn N. V. [Clinical vaccinology]. Moscow: “GOETAR-Media”; 2016. 576 p.

46. Borisevich S.V., Kutaev D.A., Rozhdestvensky S.V., Gordeev E.V., Khmelev A.L., Nazarov S.V., Melnikov S.A., Nimirskaya S.A., Chernikova N.K., Podkuiko V.N. [Method for obtaining anti-smallpox immunoglobulin from horse blood serum]. Patent RU2770425C2, published 18 April 2022. Bulletin No. 8.

47. Zimin V.I., Dorokhina T.V., Toneev V.V., Osin V.V., Borisevich S.V., Timofeev M.A. [Smallpox inactivated embryonic dry tableted vaccine for oral administration “TEOVin” and the me¬ thod for producing it]. Patent RU2651040C2, published 18 April 2018. Bulletin No. 2.

48. Zimin V.I., Dorokhina T.V., Zhukov V.A., Tselikov E.M., Rozhdestvensky E.V., Trufanova V.V., Borisevich S.V., Kovalchuk E.A., Osin V.V. [Method for producing smallpox inactivated embryonic dry tableted vaccine for oral administration]. Patent RU2744707C1, published 15 March 2021. Bulletin No. 8.

49. Wittek R. Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy. J. Infect. Dis. 2006; 10(3):193–201. DOI: 10.1016/j.ijid.2005.12.001.

50. Hopkins R.J., Kramer W.G., Blackweider C., Ashtekar M., Hague L., Winker-La Roche S.D., Berezuk G., Smith D., Leese P.T. Safety and pharmacokinetic evaluation of intravenous vacci¬ nia immune globulin in healthy volunteers. Clin. Infect. Dis. 2004; 39(6):759–66. DOI: 10.1086/422998.

51. Kinet J.P., Jovin M.H. Smallpox monoclonal antibody. Patent US7811568B2, United States, publ. Oct. 12, 2010.

52. Gorbatovskaya D.O., Sergeev A.A., Shevtsova E.V., Titova K.A., Sergeev A.A., Zamedyanskaya A.S., Bulychev L.E., Shishkina L.N., Sergeev A.N., Agafonov A.P. [Agent for stopping undesirable post-vaccination reactions and complications during primary vaccination with smallpox vaccines and a method for its use]. Patent RU2542490C1, published 20 February 2015. Bulletin No. 5.

53. FDA approves the first drug with an indication for treatment of smallpox. (Cited 11 Feb 2024). [Internet]. Available from: https://www.fda.gov/media/114295/download.

54. Leeds J.M., Fenneteau F., Gosselin N.H., Mouksassi M.S., Kassir N., Marier J.F., Chen Y., Grosenbach D., Frimm A.E., Honeychurch K.M., Chinsangaram J., Tyavanagimatt S.R., Hruby D.E., Jordan R. Pharmacokinetic and pharmacodynamic modeling to determine the dose of ST-246 to protect against smallpox in humans. Antimicrob. Agents Chemother. 2013; 57(3):1136–43. DOI: 10.1128/AAC.00959-12.

55. Moore M.J., Rathish B., Zahra F. Mpox (Monkeypox). In: StartPearls [Internet]. Treasure Island (FL): StartPearls Publishing; 2024. Jan. 2023 May 3. PMID: 34662033.

56. McCollum A.M., Damon I.K. Human monkeypox. Clin. Infect. Dis. 2014; 58(2):260–7. DOI: 10.1093/cid/cit703.

57. Rizk J.G., Lippi G., Henry B.M., Forthal D.N., Rizk Y. Prevention and treatment of monkeypox. Drugs. 2022; 82(9):957– 63. DOI: 10.1007/s40265-022-01742-y.

58. Hammarlund E., Lewis M.W., Carter S.V., Amanna I., Hansen S.G., Strelow L.I., Wong S.W., Yoshihara P., Hanifin J.M., Slifka M.K. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat. Med. 2005; 11(9):1005–11. DOI: 10.1038/nm1273.

59. Alakunle E., Moens U., Nchinda G., Okeke M.I. Monkeypox virus in Nigeria: infection biology, epidemiology, and evolution. Viruses. 2020; 12(11):1257. DOI: 10.3390/v12111257.


Review

For citations:


Borisevich S.V., Makhlay A.A., Podkuiko V.N., Terent’ev A.I., Khmelev A.L., Poyarkov A.Yu. Analysis of the Experience of Improving the Safety of Anti-Smallpox Vaccines. Problems of Particularly Dangerous Infections. 2025;(4):6-16. (In Russ.) https://doi.org/10.21055/0370-1069-2025-4-6-16

Views: 24

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)