Preview

Problems of Particularly Dangerous Infections

Advanced search

Molecular Mechanisms of Ebola Virus Entry into Permissive Cells

https://doi.org/10.21055/0370-1069-2015-3-89-93

Abstract

Ebola virus, representative of the Ebolavirus genus, Filoviridae family, causes severe hemorrhagic fever in humans, with lethality rates amounting up to 90 %. The members of Ebolavirus genus infect a broad range of mammalian cells. Recent studies indicate that entry of Ebola virus into cells requires a series of cellular protein interactions and molecular mechanisms, some of which are unique to filoviruses, while others are commonly used by all viral glycoproteins. The cellular factors deployed by filoviruses for their entry into permissive cells are defined incompletely. The aim of this review is to analyze peculiarity of the Ebola virus penetration into permissive cells at molecular level. The Ebola virus entry into cells is initiated by the interaction of viral glycoprotein with one or more receptors on the surface of host-cell. The main host-cell factors, involved in filovirus entry, are: attachment factors (cell lectins and human T-cell mucin 1 (TIM-1)), signaling factors (tyrosinkinase receptors and α5β1-integrin), and endolisosomal host-cell factors (cathepsins B and L and Niemann-Pick C1 protein. The study of the complex set of virus entry events provides potential avenues for the development of antiviral therapies against Ebola fever.

About the Authors

T. E. Sizikova
The 48th Central Research Institute of the RF Ministry of Defense
Russian Federation


V. N. Lebedev
The 48th Central Research Institute of the RF Ministry of Defense
Russian Federation


V. B. Pantyukhov
The 48th Central Research Institute of the RF Ministry of Defense
Russian Federation


S. V. Borisevich
The 48th Central Research Institute of the RF Ministry of Defense
Russian Federation


References

1. Albarino C.G., Shoemaker T., Khristova M.L., Wamala J.F., Muyembe J.J., Balinandi S., Tumusiime A., Campbell S., Cannon D., Gibbons A., Bergeron E., Bird B., Dodd K., Spiropoulou C., Erickson B.R., Guerrero L., Knust B., Nichol S.T., Rollin P.E., Stroher U. Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012. Virology. 2013; 442:97–100.

2. Baize S., Pannetier D., Oestereich L., Rieger T., Koivogui L. Emergence of Zaire Ebola Virus Disease in Guinea. N. Engl. J. Med. 2014; 371(15):1418–25.

3. Barrientos L.G., OKeefe B.R., Bray M., Sanches A., Gronenborn A.M., Boyd M.R. Cyanovirin-N binds to viral surface glycoprotein, G 1,2 and inhibits infectivity of Ebola virus. Antivirus Res. 2003; 58:47–56.

4. Basu A., Li B., Mills D.M., Panchal R.G., Cardinale S.C., Butler M.M., Peet N.P. Identification of small molecule entry inhibitor for filoviruses. J. Virol. 2011; 85:3106–19.

5. Cote M., Misasi J., Ren T., Bruches A., Lee K., Filone C.M., Hensley L., Li Q., Ory D., Chandran K. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature. 2011; 477:344–8.

6. Empig C.J., Goldsmith M.A. Associacion of the calveola vesicular system with cellular entry by filoviruses. J. Virol. 2003; 76:5266–70.

7. Feldmann H., Geisbert T.W. Ebola hemorrhagic fever. Lancet. 2011; 377:849–62.

8. Geisbert T.W., Hensley L.E., Gibb T.R., Steele K.E., Jaax N.K., Jahrling P.B. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab. Invest. 2000; 80:171–86.

9. Geisbert T.W., Hensley L.E., Larsen T., Young H.A., Reed D.S., Geisbert J.B., Scott D.P., Kagan E., Jahrling P.B., Davis K.J. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 2003; 163:2347–70.

10. Hartman A.L., Towner J.S., Nichol S.T. Ebola and Marburg hemorrhagic fever. Clin. Lab. Med. 2010; 30:161–77.

11. Hofmann-Winkler H., Kaup F., Pohlman S. Host cell factors in filovirus entry; novel players, new insights. Viruses. 2012; 4:3336–62.

12. Hunt C.L., Lennenmann N.J., Maury W. Filovirus entry: a novelty in the viiralfusion world. Viruses. 2012; 4:258–75.

13. К оnduru K., Bradfute S.B., Jasquess J., Manangeeswaran M., Nakamura S., Morshed S., Wood S.C., Bavary S., Kaplan G.G. Ebola virus glycoprotein Fc fusion protein confer protection against lethal challenge in vaccinated mice. Vaccine. 2011; 29:2968–77.

14. Kuhn J.H., Radoshitzky S.R., Guth A.C., Warfield K.L., Li W., Vincent M.J., Towner J.S., Nichol S.T., Bavary S., Choe H. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J. Biol. Chem. 2006; 281:15951–8.

15. Kuhn J.H., Becker S., Ebihara H., Geisbert T.W., Johnson K.M., Kawaoka Y., Lipkin W.I., Negredo A.I., Netesov S.V., Nichol S.T., Palacios G., Peters C.J., Tenorio A., Volchkov V.E., Jahrling P.B. Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 2010; 155:2083–103.

16. Kuhn J.H., Bao Y., Bavari S., Becker S., Bradfute S., Brauburger K., Rodney Brister J., Bukreyev A.A., Cai Y., Chandran K., Davey R.A., Dolnik O., Dye J.M., Enterlein S., Gonzalez J.P., Formenty P., Freiberg A.N., Hensley L.E., Hoenen T., Honko A.N., Ignatyev G.M., Jahrling P.B., Johnson K.M., Klenk H.D., Kobinger G., Lackemeyer M.G., Leroy E.M., Lever M.S., Mühlberger E., Netesov S.V., Olinger G.G., Palacios G., Patterson J.L., Paweska J.T., Pitt L., Radoshitzky S.R., Ryabchikova E.I., Saphire E.O., Shestopalov A.M., Smither S.J., Sullivan N.J., Swanepoel R., Takada A., Towner J.S., van der Groen G., Volchkov V.E., Volchkova V.A., Wahl-Jensen V., Warren T.K., Warfield K.L., Weidmann M., Nichol S.T. Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Arch. Virol. 2014; 159(5):1229–37.

17. Lee J.E., Fusco M.L., Hessell A.J., Oswald W.B., Burton D.R., Saphire E.O. Structure of Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008; 454:177–82.

18. Lee J.E., Saphire E.O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009; 4:621–35.

19. Martinez O., Ndungo E., Tantral L., Miller E.H., Leung L.W., Chandran K., Basler C.F. A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type – specific manner. J. Virol. 2013; 87:3324–34.

20. Marzi A., Reinheckel T., Feldmann H. Cathepsis B and L are not required for Ebola virus replication. PLoS Negl. Trop. Dis. 2012; 6:1–9.

21. Muller E.H., Harrison J.S., Radoshitzky S.R., Huggins C.D., Chi X., Dong L., Kuhn J.H., Bavari S., Lai J.R., Chanran K. Inhibition of Ebola virus entry by a C-peptide targeted to endosomes. J. Biol. Chem. 2011; 286:15854–61.

22. Muller E.H., Obernoster G., Raaben M., Herbert A.S., Deffieu M.S., Krishnan A., Ndungo E., Sandesara R.G., Carette J.E., Kuehne A.I., Ruthel G., Pfeffer S.R., Due J.R., Whelan S.P., Brummelkamp T.R., Chandran K. Ebola virus entry requires the host-programmed recognition of an intracellular recognition of an intracellular receptor. EMBO J. 2012; 31:1947–60.

23. Sanchez A., Geisbert T.W., Feldmann H. Filoviridae: Marburg and Ebola Viruses. In: Fields virology. Philadelphia, PA, USA: Lippincott Williams and Wilkins; 2007. Р. 1279–304.

24. Saseed M.F., Kolokoltsov A.A., Freiberg A.N., Holbrook M.R., Davey R.A. Phosphoinositide-3 kinase -act pathway controls cellular entry of Ebola virus. PLoS Pathog. 2008; 4(8):1–11.

25. Saseed M.F., Kolokoltsov A.A., Albrecht T., Davey R.A. Cellular entry of Ebola virus involves uptake by macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 2010; 6(9):1–15.

26. Simmons G., Rennekamp A.J., Chai N., Vandenberghe L.H., Riley J.L., Bates P. Folate receptor alpha and calveola are not required for Ebola virus glycoprotein-mediated virus infection. J. Virol. 2003; 77:13433–8.

27. Stroher U., West E., Bugany H., Klenk H.D., Schnittler H.J., Feldman H. Infection and activation of monocytes by Marburg and Ebola viruses. J. Virol. 2001; 75:11025–33.

28. Takada A., Robinson G., Goto H., Sanchez A., Murty R.G., Whitt M.A., Kawaoka Y.A. A system for functional analysis of Ebola virus glycoprotein. Proc. Natl. Acad. Sci USA. 1997; 94:14764–9.

29. Volchkov V.E., Feldmann H., Volchkova V.A., Klenk H.D. Processing of Ebola virus glycoprotein be polyprotein convertase furin. Proc. Natl. Acad. Sci USA. 1998; 95:5762–7.

30. Wool-Lewis R.J., Bates P. Characterization of Ebola virus entry bu using pseudotyped viruses: identification of receptor – deficient cell lines. J. Virol. 1998; 72(4):3155–60.

31. Yang Z.Y., Duckers H.J., Sullivan N.J., Sanchez A., Nabel E.G., Nabel G.J. Identification of the Ebola virus glycoprotein as main viral determinant of vascular cell cytotoxicity and injury. Nat. Med. 2000; 6:886–9.


Review

For citations:


Sizikova T.E., Lebedev V.N., Pantyukhov V.B., Borisevich S.V. Molecular Mechanisms of Ebola Virus Entry into Permissive Cells. Problems of Particularly Dangerous Infections. 2015;(3):89-93. (In Russ.) https://doi.org/10.21055/0370-1069-2015-3-89-93

Views: 1809


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)