Preview

Problems of Particularly Dangerous Infections

Advanced search

Yersinia pseudotuberculosis Typing Using Multi-Locus Variable-Number Tandem Repeat Analysis

https://doi.org/10.21055/0370-1069-2015-4-55-57

Abstract

Estimated has been efficacy of MLVA25 method, used for differentiation and clusterization of Yersinia pestis strains, in reference to Yersinia pseudotuberculosis strains, as well as the search of Y. pseudotuberculosis strains mostly closely related to Y. pestis . Applied was the reduced version of the technique deploying 14 out of 25 VNTR loci. Comparative study of 71 Y. pseudotuberculosis isolates and five Y. pestis strains by means of MLVA25 and MLVA14 variants revealed 75 and 54 genotypes, respectively. Y. pseudotuberculosis strains of certain serovars corresponded to certain clusters of MLVA types. According to MLVA14 typing of 221 Y. pseudotuberculosis isolates the clusters including the strains belonging to MLST types ST19 (serovar O:3) and ST43 (serovar O:1b) were the most closely related to Y. pestis .

About the Authors

V. V. Evseeva
State Research Center for Applied Microbiology and Biotechnology
Russian Federation


M. E. Platonov
State Research Center for Applied Microbiology and Biotechnology
Russian Federation


S. V. Dentovskaya
State Research Center for Applied Microbiology and Biotechnology
Russian Federation


A. P. Anisimov
State Research Center for Applied Microbiology and Biotechnology
Russian Federation


References

1. Blouin Y., Platonov M.E., Pourcel C., Evseeva V.V., Afanas’ev M.V., Balakhonov S.V., Anisimov A.P., Vergnaud G. Draft genome sequences of two Yersinia pseudotuberculosis ST43 (O:1b) strains, B-7194 and B-7195. Genome Announc. 2013; 1(4):e00510–13. DOI: 10.1128/genomeA.00510-13.

2. Bogdanovich T. Use of O-antigen gene cluster-specific PCRs for the identification and O-genotyping of Yersinia pseudotuberculosis and Yersinia pestis. J. Clin. Microbiol. 2003; 41:5103–12.

3. Hulton C.S., Higgins C.F., Sharp P.M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 1991; 5(4):825–34.

4. Ishiguro N., Nakaoka Y., Sato G., Tsubokura M. Plasmid DNA relatedness among different serogroups of Yersinia pseudotuberculosis. J. Clin. Microbiol. 1985; 21(4):662–5.

5. Laukkanen-Ninios R., Didelot X., Jolley K.A., Morelli G., Sangal V., Kristo P., Brehony C., Imori P.F., Fukushima H., Siitonen A., Tseneva G., Voskressenskaya E., Falcao J.P., Korkeala H., Maiden M.C., Mazzoni C., Carniel E., Skurnik M., Achtman M. Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing. Environ. Microbiol. 2011; 13(12):3114–27. DOI: 10.1111/j.1462-2920.2011.02588.x.

6. Le Flèche P., Hauck Y., Onteniente L., Prieur A., Denoeud F., Ramisse V., Sylvestre P., Benson G., Ramisse F., Vergnaud G. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol. 2001; 1:2.

7. Li Y., Cui Y., Hauck Y., Platonov M.E., Dai E., Song Y., Guo Z., Pourcel C., Dentovskaya S.V., Yang R., Vergnaud G. Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci. PLoS ONE. 2009; 4(6):e6000.

8. Makino S., Okada Y., Maruyama T., Kaneko S., Sasakawa C. PCR-based random amplified polymorphic DNA fingerprinting of Yersinia pseudotuberculosis and its practical applications. J. Clin. Microbiol. 1994; 32(1):65–9.

9. Niskanen T., Fredriksson-Ahomaa M., Korkeala H. Yersinia pseudotuberculosis with limited genetic diversity is a common finding in tonsils of fattening pigs. J. Food Prot. 2002; 65(3):540–5.

10. Odaert M., Berche P., Simonet M. Molecular typing of Yersinia pseudotuberculosis by using an IS200-like element. J. Clin. Microbiol. 1996; 34(9):2231–5.

11. Platonov M.E., Blouin Y., Evseeva V.V., Afanas’ev M.V., Pourcel C., Balakhonov S.V., Vergnaud G., Anisimov A.P. Draft genome sequences of five Yersinia pseudotuberculosis ST19 isolates and one isolate variant. Genome Announc. 2013; 1(2):e0012213. DOI: 10.1128/genomeA.00122-13.

12. Platonov M.E., Evseeva V.V., Svetoch T.E., Efremenko D.V., Kuznetsova I.V., Dentovskaya S.V., Kulichenko A.N., Anisimov A.P. Phylogeography of Yersinia pestis vole strains isolated from natural foci of the Caucasus and South Caucasus. Mol. Genet. Microbiol. Virol. 2012; 27(3):108–11.

13. Stewart C.-B. The powers and pitfalls of parsimony. Nature. 1993; 361(6413):603–7.

14. Voskresenskaya E., Savin C., Leclercq A., Tseneva G., Carniel E. Typing and clustering of Yersinia pseudotuberculosis isolates by restriction fragment length polymorphism analysis using insertion sequences. J. Clin. Microbiol. 2014; 52(6):1978–89. DOI: 10.1128/JCM.00397-14.

15. Voskressenskaya E., Leclercq A., Tseneva G., Carniel E. Evaluation of ribotyping as a tool for molecular typing of Yersinia pseudotuberculosis strains of worldwide origin. J. Clin. Microbiol. 2005; 43(12):6155–60.


Review

For citations:


Evseeva V.V., Platonov M.E., Dentovskaya S.V., Anisimov A.P. Yersinia pseudotuberculosis Typing Using Multi-Locus Variable-Number Tandem Repeat Analysis . Problems of Particularly Dangerous Infections. 2015;(4):55-57. (In Russ.) https://doi.org/10.21055/0370-1069-2015-4-55-57

Views: 796


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)