Preview

Problems of Particularly Dangerous Infections

Advanced search

Bacillus anthracis Siderophores

https://doi.org/10.21055/0370-1069-2016-1-68-74

Abstract

Iron is an essential for growth and reproduction of bacteria element. One of the ways of its acquisition by Bacillus anthracis is utilization of high-affinity chelating agents of iron ions - bacillibactin and petrobactin siderophores, extracting the iron from transferring and ferritin of a host cell. Bacillibactin and petrobactin functions are realized on different stages of B. anthracis growth in vivo, whereas petrobactin synthesis is also necessary for manifestation of microbe virulence. Awareness of siderophore biosynthesis pathways facilitates the development of medicines against anthrax, which can block them up. The review contains the data on the structure, genetics, and functions of B. anthracis siderophores.

About the Author

E. I. Eremenko
Stavropol Research Anti-Plague Institute
Russian Federation


References

1. Abergel R.J., Wilson M.K., Arceneaux J.E., Hoette T.M., Strong R.K. Byers B.R., Raymond K.N. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl. Acad. Sci. USA. 2006; 103:18499-503.

2. Abergel R.J., Zawadzka A.M., Raymond K.N. Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J. Am. Chem. Soc. 2008; 130:2124-5.

3. Andrews S.C., Robinson A.K. Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003; 27:215-37.

4. Barbeau K., Zhang G., Live D.H., Butler A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J. Am. Chem. Soc. 2002; 124:378-9.

5. Boukhalfa H., Crumbliss A.L. Chemical aspects of siderophore mediated iron transport. Biometals. 2002; 15:325-39.

6. Calugay R.J., Takeyama H., Mukoyama D., Fukuda Y., Suzuki T., Kanoh K., Matsunaga T. Catechol siderophore excretion by bacterium Magnetospirillum magneticum AMB-1. J. Biosci. Bioeng. 2006; 101:445-7.

7. Caparon M.G., Geist R.T., Perez-Casal J., Scott J.R. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 1992; 174:5693-701.

8. Carlson P.E.Jr., Dixon S.D., Janes B.K., Carr K.A., Nusca T.D., Anderson E.C., Keene S.E., Sherman D.H., Hanna P.C. Genetic analysis of petrobactin transport in Bacillus anthracis. Mol. Microbiol. 2010; 75:900-9.

9. Casadevall A. Cards of virulence and the global virulome for humans. Microbe. 2006; 1:359-64.

10. Cendrowski S., MacArthur W., Hanna P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol. 2004; 51:407-17.

11. Clifton M.C., Corrent C., Strong R.K. Siderocalins: siderophore-binding proteins of the innate immune system. Biometals. 2009; 22:557-64.

12. Dertz E.A., Xu J., Stintzi A., Raymond K.N. Bacillibactin mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 2006; 128:22-3.

13. Dhungana S., Anderson D.S., Mietzner T.A., Crumbliss A.L. Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+ transport. Biochemistry. 2005; 44:9606-18.

14. Dhungana S., Taboy C.H., Zak O., Larvie M., Crumbliss A.L., Aisen P. Redox properties of human transferrin bound to its receptor. Biochemistry. 2004; 43:205-9.

15. Drake E.J., Cao J., Qu J., Shah M.B., Straubinger R.M., Gulick M. The 1.8 A° crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. J. Biol. Chem. 2007; 282:20425-34.

16. Ferreras J.A., Ryu J.S., Di Lello F., Tan D.S., Quadri L.E.N. Small molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat. Chem. Biol. 2005; 1:29-32.

17. Fox D.T., Hotta K., Kim C.Y., Koppisch A.T. The missing link in petrobactin biosynthesis: asbF encodes a (-)-3-dehydroshikimatedehydratase. Biochemistry. 2008; 47:12251-3.

18. Gardner R.A., Kinkade R., Wang C., Phanstiel O. 4th.Total synthesis of petrobactin and its homologues as potential growth stimuli for Marinobacter hydrocarbonoclasticus, an oil-degrading bacteria. J. Org. Chem. 2004; 69:3530-7.

19. Garner B.L., Arceneaux J.E., Byers B.R. Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr. Microbiol. 2004; 49:89-94.

20. Griffiths E. Iron in biological systems. In: Iron and Infection Molecular, Physiological and Clinical Aspect. Chichester, UK: John Wiley and Sons; 1999. Р. 1-26.

21. Harris W.R. Iron chemistry. In: Molecular and Cellular Iron Transport. New York: Marcel Dekker; 2002. P. 1-40.

22. Hickford S.J., Kupper F.C., Zhang G., Carrano C.J., Blun J.W., Butler A. Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J. Nat. Prod. 2004; 67:1897-9.

23. Homann V.V., Edwards K.J., Webb E.A., Butler A. Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Biometals. 2009; 22:565-71.

24. Hotta K., Kim C.-Y., Fox D.T., Koppisch A.T. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology. 2010; 156:1918-25.

25. Koehler T.M., Dai Z., Kaufman-Yarbray M. Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J. Bacteriol. 1994; 176:586-95.

26. Koppisch A.T., Browder C.C., Moe A.L., Shelley J.T., Kinkel B.A., Hersman L.E., Iyer S., Ruggiero C.E. Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals. 2005; 18:577-85.

27. Koppisch A.T., Dhungana S., Hill K.K., Boukhalfa H., Heine H.S., Colip L.A., Romero R.B., Shou Y., Ticknor L.O., Marrone B.L., Hersman L.E., Iyer S., Ruggiero C.E. Petrobactin is produced by both pathogenic and nonpathogenic isolates of the Bacillus cereus group of bacteria. Biometals. 2008; 21:581-9.

28. Koppisch A.T., Hotta K., Fox D.T., Ruggiero C.E., Kim C.Y., Sanchez T., Iyer S., Browder C.C., Unkefer P.J., Unkefer C.J. Biosynthesis of the 3,4-dihydroxybenzoate moieties of petrobactin by Bacillus anthracis. J. Org. Chem. 2008; 73:5759-65.

29. Lee J.Y., Passalacqua K.D., Hanna P.C., Sherman D.H. Regulation of Petrobactin and Bacillibactin Biosynthesis in Bacillus anthracis under Iron and Oxygen Variation. PLoS ONE. 2011; 6(6):e2077. doi:10.1371/journal.pone.0020777.

30. Lee J.Y., Janes B.K., Passalacqua K.D., Pfleger B.F., Bergman N.H., Liu H. Håkansson K., Somu R.V., Aldrich C.C., Cendrowski S., Hanna P.C., Sherman D.H. Biosynthetic Analysis of the Petrobactin Siderophore Pathway from Bacillus anthracis. J. Bacteriol. 2007; 189:1698-710

31. May J.J., Wendrich T.M., Marahiel M.A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2, 3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 2001; 276:7209-17.

32. Miethke M., Marahiel M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 2007; 71:413-51.

33. Miethke M., Klotz O., Linne U., May J.J., Beckering C.L., Marahiel M.A. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 2006; 61:1413-27.

34. Miethke M., Schmidt S., Marahiel M.A. The major facilitator superfamily-type transporter YmfE and the multidrug efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis. J. Bacteriol. 2008; 190:5143-52.

35. Nusca T.D., Kim Y., Maltseva N., Lee J.Y., Eschenfeldt W., Stols L., Schofield M.M., Scaglione J.B., Dixon S.D., Oves-Costales D., Challis G.L., Hanna P.C., Pfleger B.F., Joachimiak A., Sherman D.H. Functional and structural analysis of the siderophore synthetase AsbB through reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis. J. Biol. Chem. 2012; 287:16058-72.

36. Okada N., Geist R.T., Caparon M.G. Positive transcriptional control of mry regulates virulence in the group A streptococcus. Mol. Microbiol. 1993; 7:893-903.

37. Ollinger J., Song K.B., Antelmann H., Hecker M., Helmann J.D. Role of the Fur regulon in iron transport in Bacillus subtilis. J. Bacteriol. 2006; 188:3664-73.

38. Oves-Costales D., Song L., Challis G.L. Enantioselective desymmetrisation of citric acid catalyzed by the substrate-tolerant petrobactin biosynthetic enzyme AsbA. Chem. Commun. (Camb), 2009; 11:1389-91.

39. Papinutto E., Dundon W.G., Pitulis N., Battistutta R., Montecucco C., Zanotti G. Structure of Two Iron-binding Proteins from Bacillus anthracis. J. Biol. Chem. 2002; 277:15093-8.

40. Pfleger B.F., Kim Y., Nusca T.D., Maltseva N., Lee J., Rath C.M., Scaglione J.B., Janes B.K., Anderson E.C., Bergman N.H., Hanna P.C., Joachimiak A., Sherman D.H. Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc. Natl. Acad. Sci. USA. 2008; 105:17133-8.

41. Pfleger B.F., Lee J.Y., Somu R.V., Aldrich C.C., Hanna P.C., Sherman D.H. Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry. 2007; 46:4147-57.

42. Wilson M.K., Abergel R.J., Arceneaux J.E., Raymond K.N., Byers B.R. Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. Biometals. 2010; 23:129-34.

43. Winkelmann G. Microbial siderophore-mediated transport. Biochem. Soc. Trans. 2002; 30:691-6.

44. Zawadzka A.M., Abergel R.J., Nichiporuk R., Andersen U.N., Raymond K.N. Siderophore-mediated iron acquisitions systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry. 2009; 48:3645-57.

45. Zawadzka A.M., Kim Y., Maltseva N., Nichiporuk R., Fan Y., Joachimiak A., Raymond K.N. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc. Natl. Acad. Sci. USA. 2009; 106:21854-9.


Review

For citations:


Eremenko E.I. Bacillus anthracis Siderophores . Problems of Particularly Dangerous Infections. 2016;(1):68-74. (In Russ.) https://doi.org/10.21055/0370-1069-2016-1-68-74

Views: 1081


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)