Preview

Problems of Particularly Dangerous Infections

Advanced search

Studies of Anti-Viral Activity of Chemically Synthesized Compounds against Orthopoxviruses in vitro

https://doi.org/10.21055/0370-1069-2013-2-54-59

Abstract

for ST-246 and NIOC-14 is within the range of 0,001-0,004 µg/ml, and IS for both of them is > 100000. In addition, ST-246 and NIOC-14 chemical compound efficacy, concentrated up to 0,0125; 0,025 and 0,05 µg/ml, in accordance with prophylactic charts describing an impact on ectromelia virus (EV) infectivity
in vitro, is consequently 0,6; 3 and 1 lg higher than in case of compound application after an hour of Vero cells infection with EV.

About the Authors

A. S. Kabanov
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


Al. A. Sergeev
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


L. E. Bulychev
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


N. I. Bormotov
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


L. N. Shishkina
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


Ar. A. Sergeev
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


S. A. Bodnev
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


M. O. Skarnovich
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


A. R. Shevtsov
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


B. A. Selivanov
Novosibirsk N.N.Vorozhtsov Institute of Organic Chemistry, RAS SB
Russian Federation


A. Ya. Tikhonov
Novosibirsk N.N.Vorozhtsov Institute of Organic Chemistry, RAS SB
Russian Federation


A. P. Agafonov
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


A. N. Sergeev
State Research Centre of Virology and Biotechnology “Vector”
Russian Federation


References

1. Zaks L. [Statistical Evaluation]. M.: Statistika. 1976. 598 p.

2. Selivanov B.A., Belanov E.F., Bormotov N.I., Balakhin S.M., Serova O.A., Svyatchenko V.A., Kiselev N.N., Kazachinskaya E.I., Loktev V.B., Tikhonov A.Ya. [Derivatives of the tricycle[3.2.2.02,4]non-8-EN-6,7 dicarboxylic acid inhibit replication of various Orthopoxvirus species to a maximum effect]. Doklady Akademii Nauk. 2011; 441(3):414–8.

3. Baker R.O., Bray M., Huggins J.W. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antiviral Research. 2003; 57(1-2):13–23.

4. Chen Y., Honeychurch K.M., Yang G., Byrd C.M., Harver C., Hruby D.E., Jordan R. Vaccinia virus p37 interacts with host proteins associated with LE-derived transport vesicle biogenesis. Virol. J. 2009; 6:44.

5. Duraffour S., Andrei G., Snoeck R. Tecovirimat, a p37 envelope protein inhibitor for the treatment of smallpox infection. IDrugs. 2010; 13(3):181–91.

6. Jordan R., Bailey T.R., Rippin S.R. Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases. WO 2004/112718 A3; 2005.

7. Jordan R., Goff A., Frimm A., Corrado M.L., Hensley L.E., Byrd C.M., Mucker E., Shamblin J., Bolken T.C., Wlazlowski C., Johnson W., Chapman J., Twenhafel N., Tyavanagimatt S., Amantana A., Chinsangaram J., Hruby D.E., Huggins J. ST-246 Antiviral Efficacy in a Nonhuman Primate Monkeypox Model: Determination of the Minimal Effective Dose and Human Dose Justification. Antimicrob. Agents Chemother. 2009; 53(5):1817–22.

8. Parker S., Touchette E., Oberle C., Almond M., Robertson A., Trost L.C., Lampert B., Painter G., Buller R.M. Efficacy of therapeutic intervention with an oral ether–lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antiviral Research. 2008; 77(1):39–49.

9. SIGA Technologies Inc. Advisory Committee Briefing Book. Human BioArmor. Background Package for FDA Advisory Committee Meeting on December 14–15, 2011. Vol. 1. 114 р. USA; 2011 [cited 15 May 2012]. Available from: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AntiviralDrugsAdvisoryCommittee/UCM283286.pdf.

10. Smee D.F., Sidwell R.W. A review of compounds exhibiting antiorthopoxvirus activity in animal models. Antiviral Research. 2003; 57(1–2):41–52.

11. Smith S.K., Olson V.A., Karem K.L., Jordan R., Hruby D.E., Damon I.K. In Vitro Efficacy of ST246 against Smallpox and Monkeypox. Antimicrob. Agents Chemother. 2009; 53(3):1007–12.

12. ST-246 Completely Prevents Mortality in Symptomatic Orthopox Virus Infected Primates. SIGA Technologies, Inc. Press Release. September 26, 2007 [cited 15 May 2012]. Available from: http://investor.siga.com/ releasedetail.cfm?ReleaseID=286731.

13. Yang G., Pevear D.C., Davies M.H., Collett M.S., Bailey T., Rippen S., Barone L., Burns C., Rhodes G., Tohan S., Huggins J.W., Baker R.O., Buller R.L.M., Touchette E., Waller K., Schriewer J., Neyts J., DeClercq E., Jones K., Hruby D., Jordan R. An Orally Bioavailable Antipoxvirus Compound (ST- 246) Inhibits Extracellular Virus Formation and Protects Mice from Lethal Orthopoxvirus Challenge. J. Virol. 2005; 79(20):13139–49.


Review

For citations:


Kabanov A.S., Sergeev A.A., Bulychev L.E., Bormotov N.I., Shishkina L.N., Sergeev A.A., Bodnev S.A., Skarnovich M.O., Shevtsov A.R., Selivanov B.A., Tikhonov A.Ya., Agafonov A.P., Sergeev A.N. Studies of Anti-Viral Activity of Chemically Synthesized Compounds against Orthopoxviruses in vitro. Problems of Particularly Dangerous Infections. 2013;(2):54-59. (In Russ.) https://doi.org/10.21055/0370-1069-2013-2-54-59

Views: 821


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)