Complex Approach to Species-Specific Detection of Cowpox Virus
https://doi.org/10.21055/0370-1069-2016-4-60-63
Abstract
Objective of the study is to develop and validate the method for species-specific detection of cowpox virus (CPV). Materials and methods. Utilized were oligonucleotide primers and fluorescence-labeled probes for genus-specific detection of orthopoxviruses (OPV) and species-specific detection of cowpox and ectromelia viruses (EV). Pairs of fluorescent dyes and corresponding fluorescence extinguishers were embodied into probes in accordance with their specificity: OPV-specific probe contained FAM/BHQ1 pair, CPVspecific probe – JOE/BHQ1, and EV-specific – Cy5/BHQ3. For evaluation of sensitivity and specificity of the method for species-specific detection of CPV, investigated were samples of 68 different strains of orthopoxviruses. Results and conclusions. Implemented was complex approach to species-specific detection of CPV using multiplex real-time PCR variant for simultaneous multilocus detection on the basis of three independent target genes of CPV, to genus-specific detection for the exclusion of false-negative results, and additional oligonucleotide primers and probes, providing for specific detection of EV, aimed at the exclusion of false-positive results.
About the Author
R. A. MaksyutovRussian Federation
Kol’tsovo, Novosibirsk Region, 630559
References
1. Baxby D., Bennett M., Getty B. Human cowpox 1969-93: a review based on 54 cases. Br. J. Dermatol. 1994; 131(5):598–607.
2. Blackford S., Roberts D.L., Thomas P.D. Cowpox infection causing a generalized eruption in a patient with atopic dermatitis. Br. J. Dermatol. 1993; 129(5):628–9.
3. Carroll D.S., Emerson G.L., Li Y., Sammons S., Olson V., Frace M., Nakazawa Y., Czerny C.P., Tryland M., Kolodziejek J., Nowotny N., Olsen-Rasmussen M., Khristova M., Govil D., Karem K., Damon I.K., Meyer H. Chasing Jenner's vaccine: revisiting cow- pox virus classification. PLoS One. 2011; 6(8):e23086. DOI: 10.1371/ journal.pone.0023086.
4. Duraffour S., Mertens B., Meyer H., van den Oord J.J., Mitera T., Matthys P., Snoeck R., Andrei G. Emergence of cowpox: study of the virulence of clinical strains and evaluation of antivirals. PLoS One. 2013; 8(2):e55808. DOI: 10.1371/journal.pone.0055808.
5. Gavrilova E.V., Shcherbakov D.N., Maksyutov R.A., Shchelkunov S.N. Development of real-time PCR assay for detec- tion of cowpox virus. J. Clin. Virol. 2010; 49:37–40. DOI: 10.1016/j. jcv.2010.06.003.
6. Hobi S., Mueller R.S., Hill M., Nitsche A., Löscher T., Guggemos W., Ständer S., Rjosk-Dendorfer D., Wollenberg A. Neurogenic inflammation and colliquative lymphadenitis with per- sistent orthopox virus DNA detection in a human case of cowpox virus infection transmitted by a domestic cat. Br. J. Dermatol. 2015; 173(2):535–9. DOI: 10.1111/bjd.13700.
7. Kinnunen P.M., Holopainen J.M., Hemmilä H., Piiparinen H., Sironen T., Kivelä T., Virtanen J., Niemimaa J., Nikkari S., Järvinen A., Vapalahti O. Severe Ocular Cowpox in a Human, Finland. Emerg. Infect. Dis. 2015; 21(12):2261–3. DOI: 10.3201/eid2112.150621.
8. Maksyutov R.A., Gavrilova E.V., Meyer H., Shchelkunov S.N. Real-time PCR assay for specific detection of cowpox virus. J. Virol. Methods. 2015; 175:163–9.
9. Maksyutov R.A., Gavrilova E.V., Shchelkunov S.N. Species- specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay. J. Virol. Methods. 2016; 236:215–20. DOI: 10.1016/j.jviromet.2016.07.024.
10. Ninove L., Domart Y., Vervel C., Voinot C., Salez N., Raoult D., Meyer H., Capek I., Zandotti C., Charrel R. Cowpox virus transmission from pet rats to humans, France. Emerg. Infect. Dis. 2009; 15(5):781–4. DOI: 10.3201/eid1505.090235.
11. Rimoin A.W., Mulembakani P.M., Johnston S.C., Lloyd Smith J.O., Kisalu N.K., Kinkela T.L., Blumberg S., Thomassen H.A., Pike B.L., Fair J.N., Wolfe N.D., Shongo R.L., Graham B.S., Formenty P., Okitolonda E., Hensley L.E., Meyer H., Wright L.L., Muyembe J.J. Major increase in human monkeypox inci- dence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA. 2010; 107(37):16262–7. DOI: 10.1073/pnas.1005769107.
12. Shchelkunov S.N. An increasing danger of zoonotic or- thopoxvirus infections. PLoS Pathog. 2013; 9(12):e1003756. DOI: 10.1371/journal.ppat.1003756.
13. Shchelkunov S.N., Shcherbakov D.N., Maksyutov R.A., Gavrilova E.V. Species-specific identification of variola, monkey- pox, cowpox, and vaccinia viruses by multiplex real-time PCR assay. J. Virol. Methods. 2011; 175(2):163–9. DOI: 10.1016/j. jviromet.2011.05.002.
14. Silva-Fernandes A.T., Travassos C.E., Ferreira J.M., Abrahão J.S., Rocha E.S., Viana-Ferreira F., dos Santos J.R., Bonjardim C.A., Ferreira P.C., Kroon E.G. Natural human infections with Vaccinia virus during bovine vaccinia outbreaks. J. Clin. Virol. 2009; 44(4):308–13. DOI: 10.1016/j.jcv.2009.01.007.
15. Vorou R.M., Papavassiliou V.G., Pierroutsakos I.N. Cowpox virus infection: an emerging health threat. Curr. Opin. Infect. Dis. 2008; 21(2):153–6. DOI: 10.1097/QCO.0b013e3282f44c74.
Review
For citations:
Maksyutov R.A. Complex Approach to Species-Specific Detection of Cowpox Virus. Problems of Particularly Dangerous Infections. 2016;(4):60-63. (In Russ.) https://doi.org/10.21055/0370-1069-2016-4-60-63