Preview

Problems of Particularly Dangerous Infections

Advanced search

Microarray Immunoassay Tests for Simultaneous Detection of Five Botulinum Toxins by Phosphorescence Analysis (PHOSPHAN)

https://doi.org/10.21055/0370-1069-2016-4-64-68

Abstract

Combination of multiplex microarray immunoassay tests and luminescent nanoparticle tags is considered as a promising approach to the development of highly sensitive, specific, and rapid methods of causative agent detection. Objective of this study was to develop and compare the sensitivity of the tests for simultaneous detection of five botulinic toxins (A,B,C,E,F) applying multiplex phosphorescence analysis (PHOSPHAN) using standard (Pt coproporphyrin tag-based) and modified (europium containing nanoparticles) systems of phosphorescent signal registration. Materials and methods. PHOSPHAN assay was performed in standard 96 well microplate. The toxoids added to the wells interacted with monospecific and polyvalent immunoglobulins printed as tiny spots on the bottom of each well, and with a mixture of the same antibodies conjugated to biotin. Analyzed anatoxin concentration range – 0.005 to 100 ng/ml. The reaction was manifested by streptavidin conjugated to either Pt coproporphyrin, or the luminescent nanoparticles. The luminescence of both tags was recorded in time-resolved mode by Biochip Analyzer. The limit of detection corresponded to a minimum toxoid concentration, at which the P/N ratio was equal or exceeded 2, while the number of such samples (in a series of 10-30 experiments) was no less than 50%. Results and conclusions. Both multiplex tests provided for simultaneous group-specific detection of five botulinum toxins with the option of type-specific (A, B, E) identification. No cross-reactivity was revealed. The use of phospho￾rescent nanoparticles allowed for the increase in detection sensitivity by an order of magnitude, up to 10 pg/ml. The tests developed could be recommended for specific detection and identification of botulinum toxins in clinical, environmental, and food samples. 

About the Authors

A. V. Nikitina
State Research Institute of Biological Instrument Engineering, Moscow
Russian Federation
75/1, Volokolamskoe Highway, Moscow, 125424


V. G. Pomelova
State Research Institute of Biological Instrument Engineering, Moscow
Russian Federation
75/1, Volokolamskoe Highway, Moscow, 125424


T. A. Bychenkova
State Research Institute of Biological Instrument Engineering, Moscow
Russian Federation
75/1, Volokolamskoe Highway, Moscow, 125424


D. V. Paramonov
State Research Institute of Biological Instrument Engineering, Moscow
Russian Federation
75/1, Volokolamskoe Highway, Moscow, 125424


T. S. Kostryukova
State Research Institute of Biological Instrument Engineering, Moscow
Russian Federation
75/1, Volokolamskoe Highway, Moscow, 125424


N. S. Osin
CJSC “Immunoscreen”, Moscow
Russian Federation
75/1, Volokolamskoe Highway, Moscow, 125424


References

1. Osin N.S., Pomelova V.G., Sokolov A.S., Bychenkova T.A., Bekman N.I. Sharafudinova T.Yu., Asliyan S.K., Ivanovskaya N.P., Laricheva S.Yu., Kanaeva T.A. [Phosphorescent microassay as a basisi for novel technological platform for molecular diagnostics]. RAMS Bulletin. 2007; 12:3–10.

2. Pomelova V.G., Bychenkova T.A., Ossin N.S. [PHOSPHAN mi- croplate technology-based microarray for detection of IgG antibodies against West Nile, Crimean-Congo hemorrhagic fever and tick-borne encephalitis viruses]. Probl. Osobo Opasn. Infek. 2009; 3(101):54–8.

3. Arnon S.S., Schechter R., Inglesby T.V., Henderson D.A., Bartlett J.G., Ascher M.S., Eitzen E., Fine A.D. Hauer J., Layton M., Lillibridge S., Osterholm M.T., O’Toole T., Parker G., Perl T.M., Russell P.K., Swerdlow D.L., Tonat K.; Working Group on Civilian Biodefense. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001; 285(8):059–70.

4. Capek P., Dickerson T.J. Sensing the Deadliest Toxin: Technologies for Botulinum Neurotoxin Detection. Toxins. 2010; 2:24–53; DOI: 10.3390/ toxins2010024.

5. Doellgast G. J., Triscott M. X., Beard G. A., Bottoms J. D., Cheng T., Roh B. H., Roman M. G., Hall P. A., Brown Е. Sensitive enzyme-linked immunosorbent assay for detection of Clostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coagulation assay. J. Clin. Microbiol. 1993; 31:2402–9.

6. Ferreira J. L., Eliasberg S. J., Edmonds P., Harrison M. A. Comparison of the mouse bioassay and enzyme-linked immunosorbent assay procedures for the detection of type A botulinal toxin in food. J. Food Prot. 2004; 67(1):203–6.

7. Jaras K., Tajudin A.A., Ressine A., Soukka T., Marko-Varga G., Bjartell A., Malm J., Laurell T., Lilja H. Europium nanoparticles for signal enhancement of antibody microarrays on nanoporous silicon. J. Proteome Res. 2008; 7:1308–14; DOI: 10.1021/pr700591j.

8. Jenko K.L., Zhang Y., Kostenko Y., Fan Y., Garcia-Rodriguez C., Lou J., Marks J.D., Varnum S.M. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. Analyst. 2014; 139:5093–102; DOI: 10.1039/c4an01270d.

9. Osin N.S., Pomelova V.G. Microarray immunophosphorescence technology for the detection of infectious pathogens. In: National Institute of Allergy and Infectious Diseases, NIH. Frontiers in Research. Humana Press; 2008. P. 233–40. DOI: 10.1007/978-1-59745-569-5_25.

10. Scarlatos A., Welt B. A., Cooper B.Y., Archer D., DeMarse T., Chau K.V. Methods for detecting botulinum toxin with applicability to screening foods against biological terrorist attacks. J. of Food Science. 2005; 70(8):121–30; DOI: 10.1111/j.1365-2621.2005.tb11525.x.

11. Schiavo G., Matteoli M., Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000; 80:717–66.

12. Sharma S.K., Ferreira J.L., Eblen B.S., Whiting R.C. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl. Environ. Microbiol. 2006; 72(2):1231–8. DOI: 10.1128/ AEM.72.2.1231-1238.2006.

13. Wictome M. W., Newton K., Jameson K., Hallis B., Dunnigan P., Mackay E., Clarke S., Taylor R., Gaze J., Foster K., Shone C. C. Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl. Environ. Microbiol. 1999; 65(9):3787–92.


Review

For citations:


Nikitina A.V., Pomelova V.G., Bychenkova T.A., Paramonov D.V., Kostryukova T.S., Osin N.S. Microarray Immunoassay Tests for Simultaneous Detection of Five Botulinum Toxins by Phosphorescence Analysis (PHOSPHAN). Problems of Particularly Dangerous Infections. 2016;(4):64-68. (In Russ.) https://doi.org/10.21055/0370-1069-2016-4-64-68

Views: 753


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)