Preview

Проблемы особо опасных инфекций

Расширенный поиск

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МОЛЕКУЛЯРНЫХ МЕХАНИЗМАХ ПАТОГЕНЕЗА ЧУМЫ

https://doi.org/10.21055/0370-1069-2017-3-33-40

Полный текст:

Аннотация

В обзоре проведен краткий анализ опубликованных за последние десять лет результатов исследований, посвященных изучению молекулярных механизмов действия известных на сегодняшний день факторов вирулентности возбудителя чумы Yersinia pestis. Проанализированы разные компоненты Y. pestis, синтезирующиеся бактериями на четырех этапах инфекционного процесса при бубонной форме чумы: в коже, лимфоузлах, паренхиматозных органах и крови. Описаны факторы и механизмы, которые лежат в основе защиты микробов от бактерицидного действия гуморальных и клеточных факторов врожденного иммунитета хозяина, которые по-разному воздействуют на организм животных, стимулируя проили противовоспалительную реакцию хозяина на инфекцию, и способствуют смене жизненного цикла бактерий внутри хозяина, обеспечивая переход от внутриклеточного размножения в фагоцитах на первых этапах инфекции к внеклеточному размножению в лимфоузле, селезенке, печени и крови на последующих. В обзоре рассматриваются только те факторы Y. pestis, взаимодействие которых с молекулами и клетками хозяина на разных этапах инфекционного процесса экспериментально доказано.

Об авторе

О. Н. Подладчикова
ФКУЗ «Ростовский-на-Дону научно-исследовательский противочумный институт»
Россия
344002, Ростов-на-Дону, ул. М.Горького, 117/40


Список литературы

1. Тынянова В.И., Зюзина В.П., Демидова Г.В., Соколова Е.П. Специфичность иммуномодулирующего действия эндотоксина. Yersinia pestis. Журн. микробиол., эпидемиол. и иммунобиол. 2016; 3:104–12.

2. Abramov V.M., Khlebnikov V.S., Vasiliev A.M., Kosarev I.V., Vasilenko R.N., Kulikova N.L., Khodyakova A.V., Evstigneev V.I., Uversky V.N., Motin V.L., Smirnov G.B., Brubaker R.R. Attachment of LcrV from Yersinia pestis at dual binding sites to human TLR-2 and human IFN-gamma receptor. J. Proteome Res. 2007; 6:2222–31.

3. Bartra S.S., Gong X., Lorica C.D., Jain C., Nair M.K., Schifferli D., Qian L., Li Z., Plano G.V., Schesser K. The outer membrane protein A (OmpA) of Yersinia pestis promotes intracellular survival and virulence in mice. Microb. Pathog. 2012; 52(1):41–6. DOI: 10.1016/j.micpath.2011.09.009.

4. Bergsbaken T., Cookson B.T. Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 2007; 3(11):e161.

5. Bobrov A.G., Kirillina O., Fetherston J.D., Miller M.C., Burlison J.A., Perry R.D. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicemic plague in mice. Mol. Microbiol. 2014; 93:759–75. DOI: 10.1111/mmi.12693.

6. Chaturvedi K.S., Hung C.S., Crowley J.R., Stapleton A.E., Henderson J.P. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 2012; 8:731–6. DOI: 10.1038/nchembio.

7. Chaturvedi K.S., Hung C.S., Giblin D.E., Urushidani S., Austin A.M., Dinauer M.C., Henderson J.P. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem. Biol. 2014; 9:551–6. DOI: 10.1021/cb400658k.

8. Chouikha I., Hinnebusch B.J. Yersinia-flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr. Opin. Microbiol. 2012; 15(3):239–46. DOI: 10.1016/j.mib.2012.02.003.

9. Eren E., van den Berg B. Structural basis for activation of an integral membrane protease by lipopolysaccharide. J. Biol. Chem. 2012; 287(28):23971–76. DOI: 10.1074/jbc.M112.376418.

10. Felek S., Lawrenz M.B., Krukonis E.S. The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiology. 2008; 154(6):1802–12. DOI: 10.1099/mic.0.2007/010918-0.

11. Galindo C.L., Sha J., Moen S.T., Agar S.L., Kirtley M.L., Foltz S.M., McIver L.J., Kozlova E.V., Garner H.R., Chopra A.K. Comparative global gene expression profiles of wild-type Yersinia pestis CO92 and its braun lipoprotein mutant at flea and human body temperatures. Comp. Funct. Genomics. 2010; 342168. DOI:10.1155/2010/342168.

12. Gonzalez R.J., Miller V.L. A Deadly path: bacterial spread during bubonic plague. Trends Microbiol. 2016; 24(4):239–41. DOI:10.1016/j.tim.2016.01.010.

13. Gonzalez R.J., Lane M.C., Wagner N.J., Weening E.H., Miller V.L. Dissemination of a highly virulent pathogen: tracking the early events that define infection. PLoS Pathog. 2015; 11(1):e1004587. DOI: 10.1371/journal.ppat.1004587. eCollection2015.

14. Hatkoff M., Runco L.M., Pujol C., Jayatilaka I., Furie M.B., Bliska J.B., Thanassi D.G. Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells. Infect. Immun. 2012; 80(10):3490–500. DOI: 10.1128/IAI.00434-12.

15. Hinnebusch B.J., Jarrett C.O., Callison J.A., Gardner D., Buchanan S.K., Plano G.V. Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. Infect. Immun. 2011; 79(12):4984–89. DOI: 10.1128/IAI.05307-11.

16. Höfling S., Grabowski B., Norkowski S., Schmidt M.A., Rüter C. Current activities of the Yersinia effector protein YopM. Int. J. Med. Microbiol. 2015; 305(3):424–32. DOI: 10.1016/j.ijmm.2015.03.009.

17. Houppert A.S., Bohman L., Merritt P.M., Cole C.B., Caulfield A.J., Lathem W.W., Marketon M.M. RfaL is required for Yersinia pestis type III secretion and virulence. Infect. Immun. 2013; 81(4):1186–97. DOI: 10.1128/IAI.01417-12.

18. Ke Y., Chen Z., Yang R. Yersinia pestis: mechanisms of entry into and resistance to the host cell. Front. Cell. Infect. Microbiol. 2013; 3:106. DOI: 10.3389/fcimb.2013.00106. eCollection 2013.

19. Klein K.A., Fukuto H.S., Pelletier M., Romanov G., Grabenstein J.P., Palmer L.E., Ernst R., Bliska J.B. A transposon site hybridization screen identifies galU and wecBC as important for survival of Yersinia pestis in murine macrophages. J. Bacteriol. 2012; 194(3):653–62. DOI: 10.1128/JB.06237-11.

20. Knirel Y.A., Anisimov A.P. Lipopolysaccharide of Yersinia pestis, the cause of plague: structure, genetics, biological properties. Acta Naturae. 2012; 4:46–58.

21. Kolodziejek A.M., Hovde C.J., Minnich S.A. Yersinia pestis Ail: multiple roles of a single protein. Front. Cell. Infect. Microbiol. 2012; 2:103. DOI: 10.3389/fcimb.2012.00103. eCollection 2012.

22. Korhonen T.K., Haiko J., Laakkonen L., Jarvinen H.M., Westerlund-Wikstrom B. Fibrinolytic and coagulative activities of Yersinia pestis. Front. Cell. Infect. Microbiol. 2013; 3:35. DOI: 10.3389/fcimb.2013.00035. eCollection 2013.

23. LaRock C.N., Cookson B.T. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe. 2012; 12(6):799–805. DOI: 10.1016/j.chom.2012.10.020.

24. Lawrenz M.B., Lenz J.D., Miller V.L. A novel autotrans-porter adhesin is required for efficient colonization during bubonic plague. Infect. Immun. 2009; 77(1):317–26. DOI: 10.1128/IAI.01206-08.

25. Lawrenz M.B., Pennington J., Miller V.L. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis. Mol. Microbiol. 2013; 89(2):276–87. DOI: 10.1111/mmi.12273.

26. Merritt P.M., Nero T., Bohman L., Felek S., Krukonis E.S., Marketon M.M. Yersinia pestis targets neutrophils via complement receptor 3. Cell. Microbiol. 2015; 17(5):666–87. DOI: 10.1111/cmi.12391.

27. Mikula K.M., Kolodziejczyk R., Goldman A. Yersinia infection tools – characterization of structure and function of adhesins. Front. Cell. Infect. Microbiol. 2013; 2:169. DOI: 10.3389/fcimb.2012.00169. eCollection 2012.

28. Nham T., Filali S., Danne C., Derbise A., Carniel E. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis. PLoS ONE. 2012; 7(4):e34714. DOI: 10.1371/journal.pone.0034714.

29. O’Loughlin J.L., Spinner J.L., Minnich S.A., Kobayashi S.D. Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect. Immun. 2010; 78(2):773–82. DOI: 10.1128/IAI.00718-09.

30. Paauw A., Leverstein-van Hall M.A., van Kessel K.P.M., Verhoef J., Fluit A.C. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS ONE. 2009; 4(12):e8240. DOI: 10.1371/journal.pone.0008240.

31. Perry R., Fetherston J. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect. 2011; 13(10):808–17. DOI: 10.1016/j.micinf.2011.04.008.

32. Pha K., Navarro L. Yersinia type III effectors perturb host innate immune responses. World J. Biol. Chem. 2016; 7(1):1–13. DOI: 10.4331/wjbc.v7.i1.1.

33. Plano G.V., Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol. Res. 2013; 57(1–3):237–45. DOI: 10.1007/s12026-013-8454-3.

34. Pujol C., Klein K.A., Romanov G.A., Palmer L.E., Cirota C., Zhao Z., Bliska J.B. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect. Immun. 2009; 77(6):2251–61. DOI: 10.1128/IAI.00068-09.

35. Ratner D., Orning M.P., Starheim K.K., Marty-Roix R., Proulx M.K., Goguen J.D., Lien E. Manipulation of interleukin-1β and interleukin-18 production by Yersinia pestis effectors YopJ and YopM and redundant impact on virulence. J. Biol. Chem. 2016; 291(19):9894–905. DOI: 10.1074/jbc.M115.697698.

36. Sebbane F., Jarrett C., Gardner D., Long D., Hinnebusch B.J. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect.Immun. 2009; 77 (3):1222–29. DOI: 10.1128/IAI.00950-08.

37. Sha J., Kirtley M.L., van Lier C.J., Wang S., Erova T.E., Kozlova E.V., Cao A., Cong Y., Fitts E.C., Rosenzweig J.A., Chopra A.K. Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect. Immun. 2013; 81(3):815–28. DOI:10.1128/IAI.01067-12.

38. Shannon J.G., Bosio C.F., Hinnebusch B.J. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas. PLoS Pathog. 2015; 11(3):e1004734. DOI: 10.1371/journal.ppat.1004734.

39. Shannon J.G., Hasenkrug A.M., Dorward D.W., Nair V., Carmody A.B., Hinnebusch B.J. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague. mBio. 2013; 4(5):e00170–13. DOI: 10.1128/mBio.00170-13.

40. Spinner J.L., Winfree S., Starr T., Shannon J.G., Nair V., Steele-Mortimer O., Hinnebusch B.J. Yersinia pestis survival and replication within human neutrophil phagosomes and uptake of infected neutrophils by macrophages. J. Leukoc. Biol. 2014; 95(3):389–98. DOI: 10.1189/jlb.1112551.

41. Spinner J.L., Carmody A.B., Jarrett C.O., Hinnebusch B.J. Role of Yersinia pestis toxin complex family proteins in resistance to phagocytosis by polymorphonuclear leukocytes. Infect. Immun. 2013; 81(11):4041–52. DOI: 10.1128/IAI.00648-13.

42. Spinner J.L., Hasenkrug A.M., Shannon J.G., Kobayashi S.D., Hinnebusch B.J. Role of the Yersinia YopJ protein in suppressing interleukin-8 secretion by human polymorphonuclear leukocytes. Microbes Infect. 2016; 18(1):21–9. DOI: 10.1016/j.micinf.2015.08.015.

43. St John A.L., Ang W.X., Huang M.N., Kunder C.A., Chan E.W., Gunn M.D., Abraham S.N. S1P-Dependent trafficking of intracellular Yersinia pestis through lymph nodes establishes Buboes and systemic infection. Immunity. 2014; 41(3):440–50. DOI: 10.1016/j.immuni.2014.07.013.

44. Torres R., Lan B., Latif Y., Chim N., Goulding C.W. Structu­ ral snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase. Acta Crystallogr. D. Biol. Crystallogr. 2014; 70(4):1074–85. DOI: 10.1107/S1399004714000911.

45. Tsang T.M., Felek S., Krukonis E.S. Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect. Immun. 2010; 78(8):3358–68. DOI: 10.1128/IAI.00238-10.

46. Uittenbogaard A.M., Myers-Morales T., Gorman A.A., Welsh E., Wulff C., Hinnebusch B.J., Korhonen T.K., Straley S.C. Temperature-dependence of yadBC phenotypes in Yersinia pestis. Microbioljgy. 2014; 160(2):396–405. DOI: 10.1099/mic.0.073205-0.

47. Vadyvaloo V., Jarrett C., Sturdevant D.E., Sebbane F., Hinnebusch B.J. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. PLoS Pathog. 2010; 6(2):e1000783. DOI: 10.1371/journal.ppat.1000783.

48. van Lier C.J., Sha J., Kirtley M.L., Cao A., Tiner B.L., Erova T.E., Cong Y., Kozlova E.V., Popov V.L., Baze W.B., Chopra A.K. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague. Infect. Immun. 2014; 82(6):2485– 503. DOI: 10.1128/IAI.01595-13.

49. van Lier C.J., Tiner B.L., Chauhan S., Motin V.L., Fitts E.C., Huante M.B., Endsley J.J., Ponnusamy D., Sha J., Chopra A.K. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages. Microb. Pathog. 2015; 80:27–38. DOI:10.1016/j.micpath.2015.02.005.

50. Vetter S.M., Eisen R.J., Schotthoefer A.M., Montenieri J.A., Holmes J.L., Bobrov A.G., Bearden S.W., Perry R.D., Gage K.L. Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology. 2010; 56(7):2216–25. DOI: 10.1099/mic.0.037952-0.

51. Ye Z., Gorm an A.A., Uittenbogaard A.M., Myers-Morales T., Kaplan A.M., Cohen D.A., Straley S.C. Caspase-3 mediates the pathogenic effect of Yersinia pestis YopM in liver of C57BL/6 mice and contributes to YopM’s function in spleen. PLoS ONE. 2014; 9(11):e110956. DOI: 10.1371/journal.pone.0110956. eCollection 2014.

52. Zhang S., Park C.G., Zhang P., Bartra S.S., Plano G.V., Klena J.D., Skurnik M., Hinnebusch B.J., Chen T. The plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J. Biol. Chem. 2008; 283(46):31511–21. DOI: 10.1074/jbc.M804646200.


Рецензия

Для цитирования:


Подладчикова О.Н. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МОЛЕКУЛЯРНЫХ МЕХАНИЗМАХ ПАТОГЕНЕЗА ЧУМЫ. Проблемы особо опасных инфекций. 2017;(3):33-40. https://doi.org/10.21055/0370-1069-2017-3-33-40

For citation:


Podladchikova O.N. MODERN VIEWS ON MOLECULAR MECHANISMS OF PLAGUE PATHOGENESIS. Problems of Particularly Dangerous Infections. 2017;(3):33-40. (In Russ.) https://doi.org/10.21055/0370-1069-2017-3-33-40

Просмотров: 773


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0370-1069 (Print)
ISSN 2658-719X (Online)